Publications by authors named "Kiraly V"

Retinal ganglion cells (RGCs) are the neuronal connections between the eye and the brain conveying multiple features of the outside world through parallel pathways. While there is a large body of literature how these pathways arise in the retinal network, the process of converting presynaptic inputs into RGC spiking output is little understood. In this study, we show substantial differences in the spike generator across three types of alpha RGCs in female and male mice, the αON sustained, αOFF sustained and αOFF transient RGC.

View Article and Find Full Text PDF

Introduction: Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection, the causative agent of coronavirus disease 2019 (COVID-19), causes post-acute infection syndrome in a surprisingly large number of cases worldwide. This condition, also known as long COVID or post-acute sequelae of COVID-19, is characterized by extremely complex symptoms and pathology. There is a growing consensus that this condition is a consequence of virus-induced immune activation and the inflammatory cascade, with its prolonged duration caused by a persistent virus reservoir.

View Article and Find Full Text PDF
Article Synopsis
  • Acquired Hemophilia A (AHA) is an unusual autoimmune disorder that can cause severe bleeding due to inhibitors targeting Factor VIII, often emerging after certain treatments.
  • The study involved a 68-year-old man who developed AHA after taking adalimumab for rheumatoid arthritis, leading to significant bleeding that required specialized treatment with recombinant Factor VIIa.
  • This case highlights the need for quick coagulation assessments in rheumatoid arthritis patients on adalimumab and reviews existing literature on drug-induced AHA, aiming to improve awareness and prompt intervention among healthcare professionals.
View Article and Find Full Text PDF

The effectiveness of COVID-19 vaccines developed against the original virus strain deteriorated noticeably in efficacy against the Omicron variant (B.1.1.

View Article and Find Full Text PDF

The 70 kDa heat shock proteins (Hsp70) are prone to self-assembly under thermal stress conditions, forming supramolecular assemblies (SMA), what may have detrimental consequences for cellular viability. In mitochondria, the cochaperone Hsp70-escort protein 1 (Hep1) maintains mitochondrial Hsp70 (mtHsp70) in a soluble and functional state, contributing to preserving proteostasis. Here we investigated the interaction between human Hep1 (hHep1) and HSPA9 (human mtHsp70) or HSPA1A (Hsp70-1A) in monomeric and thermic SMA states to unveil further information about the involved mechanisms.

View Article and Find Full Text PDF

Mitochondrial Hsp70 (HSPA9, mtHsp70, mortalin) in conjunction with a complex set of other proteins is involved in the transport of polypeptides across the mitochondrial matrix. This observation allows us to hypothesize that HSPA9 might interact with membranes directly, similarly to other Hsp70s. Thus, we investigated whether human HSPA9 could also get inserted into lipid membranes.

View Article and Find Full Text PDF

Heat shock proteins (HSPs) are ubiquitous polypeptides expressed in all living organisms that participate in several basic cellular processes, including protein folding, from which their denomination as molecular chaperones originated. There are several HSPs, including HSPA5, also known as 78-kDa glucose-regulated protein (GRP78) or binding immunoglobulin protein (BIP) that is an ER resident involved in the folding of polypeptides during their translocation into this compartment prior to the transition to the Golgi network. HSPA5 is detected on the surface of cells or secreted into the extracellular environment.

View Article and Find Full Text PDF

The Hsp70 family of heat shock proteins plays a critical function in maintaining cellular homeostasis within various subcellular compartments. The human mitochondrial Hsp70 (HSPA9) has been associated with cellular death, senescence, cancer and neurodegenerative diseases, which is the rational for the name mortalin. It is well documented that mortalin, such as other Hsp70s, is prone to self-aggregation, which is related to mitochondria biogenesis failure.

View Article and Find Full Text PDF

Hsp90s are key proteins in cellular homeostasis since they interact with many client proteins. Several studies indicated that Hsp90s are potential targets for treating diseases, such as cancer or malaria. It has been shown that Hsp90s from different organisms have peculiarities despite their high sequence identity.

View Article and Find Full Text PDF

Heat shock protein 70 kDa (Hsp70) is a conserved molecular chaperone family involved in several functions related to protein homeostasis. In eukaryotes, Hsp70 homologues are found in all cell compartments. The mitochondrial Hsp70 isoform (mtHsp70) is involved in import of mitochondrial matrix proteins as well as their folding and maturation.

View Article and Find Full Text PDF

The Val617Phe point mutation of Janus kinase 2 gene is believed to participate in the pathogenesis of myeloproliferative syndrome characterised by the clonal alteration of hematopoietic stem cells. According to current results, the frequency of Val617Phe activating mutation is around 80% in polycythaemia vera, 35% in essential thrombocythemia, and 50% in chronic idiopathic myelofibrosis. The diagnoses of polycythemia vera, essential thrombocythemia and idiopathic myelofibrosis were so far based on the exclusion of secondary factors as well as bone marrow biopsy histology.

View Article and Find Full Text PDF