Objectives: A cross-sectional study to establish whether a subject's cognitive state can be predicted based on regional values obtained from brain cortical maps of FDDNP Distribution Volume Ratio (DVR), which shows the pattern of beta amyloid and neurofibrillary binding, along with those of early summed FDDNP PET images (reflecting the pattern of perfusion) was performed.
Methods: Dynamic FDDNP PET studies were performed in a group of 23 subjects (8 control (NL), 8 Mild Cognitive Impairment (MCI) and 7 Alzheimer's Disease (AD) subjects). FDDNP DVR images were mapped to the MR derived hemispheric cortical surface map warped into a common space.
Amyloid plaques and tau neurofibrillary tangles, the pathological hallmarks of Alzheimer's disease (AD), begin accumulating in the healthy human brain decades before clinical dementia symptoms can be detected. There is great interest in how this pathology spreads in the living brain and its association with cognitive deterioration. Using MRI-derived cortical surface models and four-dimensional animation techniques, we related cognitive ability to positron emission tomography (PET) signal from 2-(1-{6-[(2-[F-18]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile ([(18)F]FDDNP), a molecular imaging probe for plaques and tangles.
View Article and Find Full Text PDFUsing time-lapse maps, we visualized the dynamics of schizophrenia progression, revealing spreading cortical changes that depend on the type of antipsychotic treatment. Dynamic, 4-dimensional models of disease progression were created from 4 repeated high-resolution brain magnetic resonance imaging scans of 36 first-episode schizophrenia patients (30 men/6 women; mean age: 24.2 +/- 5.
View Article and Find Full Text PDFAm J Geriatr Psychiatry
January 2009
Objective: To compare the volumes of the caudate nucleus, using traditional volumetry and a three-dimensional brain mapping technique, in a group of individuals with late-life depression and a group of age- and education-equated nondepressed comparison subjects.
Design: Cross-sectional.
Setting: University Medical Center.
In this study, a computational mapping technique was used to examine the three-dimensional profile of the lateral ventricles in autism. T1-weighted three-dimensional magnetic resonance images of the brain were acquired from 20 males with autism (age: 10.1+/-3.
View Article and Find Full Text PDFJ Am Acad Child Adolesc Psychiatry
May 2008
Objective: Early-onset bipolar disorder is thought to be a particularly severe variant of the illness. Continuity with the adult form of illness remains unresolved, but preliminary evidence suggests similar biological underpinnings. Recently, we observed localized hippocampal decreases in unmedicated adults with bipolar disorder that were not detectable with conventional volumetric measures.
View Article and Find Full Text PDFObjective: To determine how neuroanatomic variation in children and adolescents with fragile X syndrome is linked to reduced levels of the fragile X mental retardation-1 protein and to aberrant cognition and behavior.
Methods: This study included 84 children and adolescents with the fragile X full mutation and 72 typically developing control subjects matched for age and sex. Brain morphology was assessed with volumetric, voxel-based, and surface-based modeling approaches.
Background: Alzheimer disease (AD) is the most common form of dementia worldwide. Mild cognitive impairment (MCI) is the recent terminology for patients with cognitive deficiencies in the absence of functional decline. Most patients with MCI harbor the pathologic changes of AD and demonstrate transition to dementia at a rate of 10% to 15% per year.
View Article and Find Full Text PDFJ Child Psychol Psychiatry
September 2007
Background: There are, to date, no pre-post onset longitudinal imaging studies of bipolar disorder at any age. We report the first prospective study of cortical brain development in pediatric bipolar illness for 9 male children, visualized before and after illness onset.
Method: We contrast this pattern with that observed in a matched group of healthy children as well as in a matched group of 8 children with 'atypical psychosis' who had similar initial presentation marked by mood dysregulation and transient psychosis (labeled as 'multi-dimensionally impaired' (MDI)) as in the bipolar group, but have not, to date, developed bipolar illness.
Declarative memory impairments are common in patients with bipolar illness, suggesting underlying hippocampal pathology. However, hippocampal volume deficits are rarely observed in bipolar disorder. Here we used surface-based anatomic mapping to examine hippocampal anatomy in bipolar patients treated with lithium relative to matched control subjects and unmedicated patients with bipolar disorder.
View Article and Find Full Text PDFIEEE Trans Med Imaging
June 2007
In medical imaging, parameterized 3-D surface models are useful for anatomical modeling and visualization, statistical comparisons of anatomy, and surface-based registration and signal processing. Here we introduce a parameterization method based on Riemann surface structure, which uses a special curvilinear net structure (conformal net) to partition the surface into a set of patches that can each be conformally mapped to a parallelogram. The resulting surface subdivision and the parameterizations of the components are intrinsic and stable (their solutions tend to be smooth functions and the boundary conditions of the Dirichlet problem can be enforced).
View Article and Find Full Text PDFDement Geriatr Cogn Disord
October 2007
Background: Apathy is the most common noncognitive symptom in Alzheimer's disease (AD). The structural correlates of apathy in AD have not yet been described.
Methods: We analyzed magnetic resonance imaging data of 35 AD patients with and without apathy.
We investigated the associations between Boston naming and the animal fluency tests and cortical atrophy in 19 probable AD and 5 multiple domain amnestic mild cognitive impairment patients who later converted to AD. We applied a surface-based computational anatomy technique to MRI scans of the brain and then used linear regression models to detect associations between animal fluency and Boston Naming Test (BNT) performance and cortical atrophy. The global permutation-corrected significance for the maps associating BNT performance with cortical atrophy was p=.
View Article and Find Full Text PDFPopulation-based brain mapping provides great insight into the trajectory of aging and dementia, as well as brain changes that normally occur over the human life span. We describe three novel brain mapping techniques, cortical thickness mapping, tensor-based morphometry (TBM), and hippocampal surface modeling, which offer enormous power for measuring disease progression in drug trials, and shed light on the neuroscience of brain degeneration in Alzheimer's disease (AD) and mild cognitive impairment (MCI). We report the first time-lapse maps of cortical atrophy spreading dynamically in the living brain, based on averaging data from populations of subjects with Alzheimer's disease and normal subjects imaged longitudinally with MRI.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
April 2007
Tensor-based morphometry (TBM) is widely used in computational anatomy as a means to understand shape variation between structural brain images. A 3D nonlinear registration technique is typically used to align all brain images to a common neuroanatomical template, and the deformation fields are analyzed statistically to identify group differences in anatomy. However, the differences are usually computed solely from the determinants of the Jacobian matrices that are associated with the deformation fields computed by the registration procedure.
View Article and Find Full Text PDFClinical observations have suggested that the neuropsychological profile of early and late onset forms of Alzheimer's disease (EOAD and LOAD) differ in that neocortical functions are more affected in the former and learning in the latter, suggesting that they might be different diseases. The aim of this study is to assess the brain structural basis of these observations, and test whether neocortical areas are more heavily affected in EOAD and medial temporal areas in LOAD. Fifteen patients with EOAD and 15 with LOAD (onset before and after age 65; Mini Mental State Examination 19.
View Article and Find Full Text PDFBackground: The neurobiological underpinnings of bipolar disorder are not well understood. Previous neuroimaging findings have been inconsistent; however, new methods for three-dimensional (3-D) computational image analysis may better characterize neuroanatomic changes than standard volumetric measures.
Methods: We used high-resolution magnetic resonance imaging and cortical pattern matching methods to map gray matter differences in 28 adults with bipolar disorder, 70% of whom were lithium-treated (mean age = 36.
Prior cross-sectional anatomic brain imaging studies of the hippocampus in schizophrenia have generally shown loss in total hippocampal volume although the progressive course of these changes remains unknown. We report the first prospective sub-regional maps of hippocampal development in childhood onset schizophrenia (COS), reconstructed from serial brain MRI scans of 29 children with COS scanned every 2 years (87 scans) and compared to 31 controls matched for age, sex, and scan interval (94 scans). As expected, the COS subjects showed significant bilateral deficits (9-10%) in total hippocampal volume which remained consistent between age 9 and 26.
View Article and Find Full Text PDFAlzheimer Dis Assoc Disord
February 2007
The Mini-mental State Examination (MMSE) is a brief cognitive screening instrument frequently used to track Alzheimer disease (AD) progression. We investigated the structural neuroimaging correlates of MMSE performance in patients with clinical and preclinical AD. We analyzed structural magnetic resonance imaging data from 29 probable AD and 5 MCI patients who later converted to probable AD using an advanced 3D cortical mapping technique.
View Article and Find Full Text PDFModeling and understanding the variability of brain structures is a fundamental problem in neurosciences. Improved mathematical representations of structural brain variation are needed to help detect and understand genetic or disease related sources of abnormality, as well as to improve statistical power when integrating functional brain mapping data across subjects. In this paper, we develop a new mathematical model of normal brain variation based on a large set of cortical sulcal landmarks (72 per brain) delineated in each of 98 healthy human subjects scanned with 3D MRI (age: 51.
View Article and Find Full Text PDFWe mapped the profile of neocortical thickness and complexity in patients with mesial temporal lobe epilepsy (MTLE) and hippocampal sclerosis. Thirty preoperative high-resolution magnetic resonance imaging scans were acquired from 15 right (mean age: 31.9 +/- 9.
View Article and Find Full Text PDFBrain imaging studies of the hippocampus in autism have yielded inconsistent results. In this study, a computational mapping strategy was used to examine the three-dimensional profile of hippocampal abnormalities in autism. Twenty-one males with autism (age: 9.
View Article and Find Full Text PDFUnlabelled: 35% of HIV-infected patients have cognitive impairment, but the profile of HIV-induced brain damage is still not well understood. Here we used tensor-based morphometry (TBM) to visualize brain deficits and clinical/anatomical correlations in HIV/AIDS. To perform TBM, we developed a new MRI-based analysis technique that uses fluid image warping, and a new alpha-entropy-based information-theoretic measure of image correspondence, called the Jensen-Rényi divergence (JRD).
View Article and Find Full Text PDFAlzheimer's disease is the most common neurodegenerative disorder in the elderly. Amnestic mild cognitive impairment (MCI) is a relatively newly defined clinical entity that requires memory decline while activities of daily living remain intact. Most amnestic MCI patients develop Alzheimer's disease.
View Article and Find Full Text PDFApplying a recently developed method to analyze gyrification with excellent spatial resolution across thousands of points across the lateral and medial cortical surface, we mapped differences in cortical surface anatomy between subjects with Williams syndrome (WS; n=42) and an age-matched sample of healthy subjects (n=40). WS subjects showed increased gyrification bilaterally in occipital regions and over the cuneus. Differences were more pronounced in the left hemisphere than in the right, with additional regions of increased gyrification in WS in the left precuneus, posterior and anterior cingulate, paracentral and mesial frontal lobe.
View Article and Find Full Text PDF