Publications by authors named "Kira Rubtsova"

B cells contribute to multiple aspects of autoimmune disorders, and B cell-targeting therapies, including B cell depletion, have been proven to be efficacious in treatment of multiple autoimmune diseases. However, the development of novel therapies targeting B cells with higher efficacy and a nondepleting mechanism of action is highly desirable. Here we describe a nondepleting, high-affinity anti-human CD19 antibody LY3541860 that exhibits potent B cell inhibitory activities.

View Article and Find Full Text PDF

TbetCD11c B cells arise during type 1 pathogen challenge, aging, and autoimmunity in mice and humans. Here, we examined the developmental requirements of this B cell subset. In acute infection, T follicular helper (Tfh) cells, but not Th1 cells, drove TbetCD11c B cell generation through proximal delivery of help.

View Article and Find Full Text PDF
Article Synopsis
  • A specific type of B cells, known as age-associated B cells (ABCs), is found in higher numbers in individuals with infections or autoimmune conditions.
  • Researchers aimed to determine the levels of ABC-like cells in patients with lung granulomatous diseases, such as sarcoidosis.
  • Results showed that patients with sarcoidosis had elevated levels of ABC-like cells in both blood and bronchoalveolar lavage (BAL) samples, and treatment led to a decrease in these cells, indicating a potential role for ABC-like cells in diagnosis and treatment strategies for lung diseases.
View Article and Find Full Text PDF

Size and composition of γδ T cell populations change dramatically with tissue location, during development, and in disease. Given the functional differentiation of γδ T cell subsets, such shifts might alter the impact of γδ T cells on the immune system. To test this concept, and to determine if γδ T cells can affect other immune cells prior to an immune response, we examined non-immunized mice derived from strains with different genetically induced deficiencies in γδ T cells, for secondary changes in their immune system.

View Article and Find Full Text PDF

Ataxia-Telangiectasia (AT) is an immunodeficiency most often associated with T cell abnormalities. We describe a patient with a hyper-IgM phenotype and immune cell abnormalities that suggest a distinct clinical phenotype. Significant B cell abnormalities with increased unswitched memory B cells, decreased naive transitional B cells, and an elevated frequency of CD19CD38CD27CD10CD21 B cells expressing high levels of T-bet and Fas were demonstrated.

View Article and Find Full Text PDF

Autoimmune diseases affect more than 23.5million Americans. Traditional therapies for autoimmune diseases involve immunosuppressive drugs that globally dampen immune responses or target and kill large populations of normal immune cells.

View Article and Find Full Text PDF

B cells contribute to multiple aspects of autoimmune disorders and may play a role in triggering disease. Thus, targeting B cells may be a promising strategy for treating autoimmune disorders. Better understanding of the B cell subsets that are responsible for the development of autoimmunity will be critical for developing efficient therapies.

View Article and Find Full Text PDF

Knowledge of the processes that underlie IgG subclass switching could inform strategies designed to counteract infections and autoimmunity. Here we show that TLR7 ligands induce subsets of memory CD4 and CD8 T cells to secrete interferon γ (IFNγ) in the absence of antigen receptor stimulation. In turn, TLR ligation and IFNγ cause B cells to express the transcription factor, T-bet, and to switch immunoglobulin production to IgG2a/c.

View Article and Find Full Text PDF

A newly discovered B cell subset, age-associated B cells, expresses the transcription factor T-bet, has a unique surface phenotype, and accumulates progressively with age. Moreover, B cells with these general features are associated with viral infections and autoimmunity in both mice and humans. In this article, we review current understanding of the characteristics, origins, and functions of these cells.

View Article and Find Full Text PDF

In addition to the secretion of Ag-specific Abs, B cells may play an important role in the generation of immune responses by efficiently presenting Ag to T cells. We and other investigators recently described a subpopulation of CD11c(+) B cells (Age/autoimmune-associated B cells [ABCs]) that appear with age, during virus infections, and at the onset of some autoimmune diseases and participate in autoimmune responses by secreting autoantibodies. In this study, we assessed the ability of these cells to present Ag and activate Ag-specific T cells.

View Article and Find Full Text PDF

Autoimmune diseases occur when the immune system attacks and destroys the organs and tissues of its own host. Autoimmunity is the third most common type of disease in the United States. Because there is no cure for autoimmunity, it is extremely important to study the mechanisms that trigger these diseases.

View Article and Find Full Text PDF

The majority of autoimmune diseases have a strong gender bias, affecting mostly females. Gender-specific factors like sex-hormones, the presence or absence of a second X chromosome, and gender-specific gut microbiota may contribute to this bias. In this review we will discuss the role of the X chromosome encoded toll-like receptor 7 (TLR7) and interferon gamma (IFNγ) in the development of autoimmunity.

View Article and Find Full Text PDF

Src-like adaptor protein (SLAP) adapts c-Cbl, an E3 ubiquitin ligase, to activated components of the BCR signaling complex regulating BCR levels and signaling in developing B cells. Based on this function, we asked whether SLAP deficiency could decrease the threshold for tolerance and eliminate development of autoreactive B cells in two models of autoantibody production. First, we sensitized mice with a dsDNA mimetope that causes an anti-dsDNA response.

View Article and Find Full Text PDF

IgG2a is known to be the most efficient antibody isotype for viral clearance. Here, we demonstrate a unique pathway of B-cell activation, leading to IgG2a production, and involving synergistic stimulation via B-cell antigen receptors, toll-like receptor 7 (TLR7), and IFNγ receptors on B cells. This synergistic stimulation leads to induction of T-box transcription factor T-bet expression in B cells, which, in turn, drives expression of CD11b and CD11c on B cells.

View Article and Find Full Text PDF

Although autoantibodies are the hallmarks of most autoimmune diseases, the mechanisms by which autoreactive B cells are generated and accumulate are still poorly understood. Overexpression of Toll-like receptor 7 (TLR7) that recognizes single-stranded RNAs has been implicated in systemic lupus erythematosus (SLE), although the cellular mechanism by which this receptor drives the disease is unknown. We recently identified a population of CD11c(+) age-associated B cells (ABCs) which is driven by TLR7 signaling, secretes autoantibodies and appears in autoimmune-prone mice by the time of onset of autoimmunity.

View Article and Find Full Text PDF

“A significant body of research suggests roles for sex hormones as well as genetic factors in the development and/or progression of autoimmunity.”

View Article and Find Full Text PDF

Major histocompatibility complex class I (MHCI) and MHCII proteins differ in structure and sequence. To understand how T cell receptors (TCRs) can use the same set of variable regions to bind both proteins, we have presented a comparison of a single TCR bound to both MHCI and MHCII ligands. The TCR adopts similar orientations on both ligands with TCR amino acids thought to be evolutionarily conserved for MHC interaction occupying similar positions on the MHCI and MHCII helices.

View Article and Find Full Text PDF

Females are more susceptible than males to many autoimmune diseases. The processes causing this phenomenon are incompletely understood. Here, we demonstrate that aged female mice acquire a previously uncharacterized population of B cells that we call age-associated B cells (ABCs) and that these cells express integrin α(X) chain (CD11c).

View Article and Find Full Text PDF

Autoimmunity is controlled both by the environment and by genetic factors. One of the most well defined genetic factors is polymorphisms, with some alleles of particular genes promoting autoimmune diseases, whereas other alleles either not affecting susceptibility to disease or, in some cases actually inhibiting the appearance of such illnesses. Another genetically controlled factor, gender, also plays a profound role in the incidence of autoimmune diseases.

View Article and Find Full Text PDF

We have hypothesized that in the prenegative selection TCR repertoire, many somatically generated complementary-determining region (CDR) 3 loops combine with evolutionarily selected germline Valpha/Vbeta CDR1/CDR2 loops to create highly MHC/peptide cross-reactive T cells that are subsequently deleted by negative selection. Here, we present a mutational analysis of the Vbeta CDR3 of such a cross-reactive T-cell receptor (TCR), YAe62. Most YAe62 TCRs with the mutant CDR3s became less MHC promiscuous.

View Article and Find Full Text PDF

The ligands for alpha beta T cell receptors (alphabetaTCRs) are usually major histocompatibility complex (MHC) proteins bound to peptides. Although there is evidence that T cell receptor variable regions have been selected evolutionarily to bind MHC, the rules governing this interaction have not previously been apparent. However, recent solved structures of T cell receptors with related variable regions bound to MHC plus peptides suggest that some amino acids in variable region CDR1 and CDR2s almost always react in a consistent way with MHC.

View Article and Find Full Text PDF

To test whether highly crossreactive alphabeta T cell receptors (TCRs) produced during limited negative selection best illustrate evolutionarily conserved interactions between TCR and major histocompatibility complex (MHC) molecules, we solved the structures of three TCRs bound to the same MHC II peptide (IAb-3K). The TCRs had similar affinities for IAb-3K but varied from noncrossreactive to extremely crossreactive with other peptides and MHCs. Crossreactivity correlated with a shrinking, increasingly hydrophobic TCR-ligand interface, involving fewer TCR amino acids.

View Article and Find Full Text PDF

Reovirus infection provides a classic experimental model system for studying the pathogenesis of viral infections of the central nervous system (CNS), with apoptosis acting as the major mechanism of cell death. The authors have examined the role of signal transducer and activator of transcription (STAT)1, a component of Janus-activated kinase (JAK)-STAT signaling, a pathway implicated in antiviral responses and pathways regulating apoptosis, following reovirus infection. Infection of primary cortical neuron cultures with reovirus serotype 3 strain Abney (T3A) resulted in phosphorylation of STAT1 at sites critical for transcriptional activity.

View Article and Find Full Text PDF