Organic salts represent an ideal experimental playground for studying the interplay between magnetic and charge degrees of freedom, which has culminated in the discovery of several spin-liquid candidates such as κ-(ET)_{2}Cu_{2}(CN)_{3} (κ-Cu). Recent theoretical studies indicate the possibility of chiral spin liquids stabilized by ring exchange, but the parent states with chiral magnetic order have not been observed in this material family. In this Letter, we discuss the properties of the recently synthesized κ-(BETS)_{2}Mn[N(CN)_{2}]_{3} (κ-Mn).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2020
The exotic properties of quantum spin liquids (QSLs) have continually been of interest since Anderson's 1973 ground-breaking idea. Geometrical frustration, quantum fluctuations, and low dimensionality are the most often evoked material's characteristics that favor the long-range fluctuating spin state without freezing into an ordered magnet or a spin glass at low temperatures. Among the few known QSL candidates, organic crystals have the advantage of having rich chemistry capable of finely tuning their microscopic parameters.
View Article and Find Full Text PDFIn the quest for materials with unconventional quantum phases, the organic triangular-lattice antiferromagnet κ-(ET)Cu(CN) has been extensively discussed as a quantum spin liquid (QSL) candidate. The description of its low temperature properties has become, however, a particularly challenging task. Recently, an intriguing quantum critical behaviour was suggested from low-temperature magnetic torque experiments.
View Article and Find Full Text PDFThe so-called "Kitaev candidate" materials based on 4d^{5} and 5d^{5} metals have recently emerged as magnetic systems displaying strongly anisotropic exchange interactions reminiscent of the Kitaev's honeycomb model. Recently, these materials have been shown to commonly display a distinct sawtooth angular dependence of the magnetic torque over a wide range of magnetic fields. While higher order chiral spin interactions have been considered as a source of this observation, we show here that bilinear anisotropic interactions and/or g anisotropy are each sufficient to explain the observed torque response, which may be distinguished on the basis of high-field measurements.
View Article and Find Full Text PDFRecent studies have brought α-RuCl_{3} to the forefront of experimental searches for materials realizing Kitaev spin-liquid physics. This material exhibits strongly anisotropic exchange interactions afforded by the spin-orbit coupling of the 4d Ru centers. We investigate the dynamical response at finite temperature and magnetic field for a realistic model of the magnetic interactions in α-RuCl_{3}.
View Article and Find Full Text PDFThe description of quantized collective excitations stands as a landmark in the quantum theory of condensed matter. A prominent example occurs in conventional magnets, which support bosonic magnons-quantized harmonic fluctuations of the ordered spins. In striking contrast is the recent discovery that strongly spin-orbital-coupled magnets, such as α-RuCl, may display a broad excitation continuum inconsistent with conventional magnons.
View Article and Find Full Text PDF