Publications by authors named "Kiptily V"

The fusion-born alpha particle heating in magnetically confined fusion machines is a high priority subject for studies. The self-heating of thermonuclear fusion plasma by alpha particles was observed in recent deuterium-tritium (D-T) experiments on the joint European torus. This observation was possible by conducting so-called "afterglow" experiments where transient high fusion yield was achieved with neutral beam injection as the only external heating source, and then termination of the heating at peak performance.

View Article and Find Full Text PDF

A new deuterium-tritium experimental, DTE2, campaign has been conducted at the Joint European Torus (JET) between August 2021 and late December 2021. Motivated by significant enhancements in the past decade at JET, such as the ITER-like wall and enhanced auxiliary heating power, the campaign achieved a new fusion energy world record and performed a broad range of fundamental experiments to inform ITER physics scenarios and operations. New capabilities in the area of fusion product measurements by nuclear diagnostics were available as a result of a decade long enhancement program.

View Article and Find Full Text PDF

The most performant deuterium-tritium (DT) plasma discharges realized by the Joint European Torus (JET) tokamak in the recent DT campaign have produced neutron yields on the order of 10 n/s. At such high neutron yields, gamma-ray spectroscopy measurements with scintillators are challenging as events from the neutron-induced background often dominate over the signal, leading to a significant fraction of pileup events and instability of the photodetector gain along with the consequent degradation of the reconstructed spectrum. Here, we describe the solutions adopted for the tangential lanthanum bromide spectrometer installed at JET.

View Article and Find Full Text PDF

The Joint European Torus (JET) is the only tokamak in the world able to operate in Deuterium-Tritium (DT) plasmas. A successful DT experimental campaign, the DTE2, has recently been carried out, providing unique opportunities for studying both physics and technological aspects. In particular, it allowed us to investigate and benchmark the solutions adopted to attenuate the significant 14 MeV neutron flux, needed to enable high-resolution gamma-ray spectroscopy measurements on a tokamak.

View Article and Find Full Text PDF

Capacitive plasma pickup is a well-known and difficult problem for plasma-facing edge diagnostics. This problem must be addressed to ensure an accurate and robust interpretation of the real signal measurements vs noise. The Faraday cup fast ion loss detector array of the Joint European Torus (JET) is particularly prone to this issue and can be used as a testbed to prototype solutions.

View Article and Find Full Text PDF

Long-pulse operation of a self-sustained fusion reactor using toroidal magnetic containment requires control over the content of alpha particles produced by D-T fusion reactions. On the one hand, MeV-class alpha particles must stay confined to heat the plasma. On the other hand, decelerated helium ash must be expelled before diluting the fusion fuel.

View Article and Find Full Text PDF

The JET FILD is a scintillator-based Fast-ion Loss Detector optimized to measure fusion-born alpha-particle losses. This work covers its upgrade and absolute calibration in preparation for the following JET DT experiments. A fast scintillator material (TG-Green) has been installed in the JET FILD.

View Article and Find Full Text PDF

A new tangential gamma-ray spectrometer has been developed for fast ion measurements in deuterium and deuterium-tritium plasmas of the Joint European Torus (JET). The instrument is based on a LaBr crystal with a photo-multiplier tube and replaces a pre-existing bismuth germanate detector, providing enhanced energy resolution and a counting rate capability in the MHz range. The line of sight is equipped with a LiH attenuator, which reduces the background due to 14 MeV neutron interactions with the crystal by more than two orders of magnitude and enables the observation of gamma-ray emission from confined α particles in JET deuterium-tritium plasmas.

View Article and Find Full Text PDF

The Joint European Torus (JET) gamma-ray camera has been recently upgraded with the installation of new gamma-ray detectors, based on LaBr(Ce) scintillation crystals, which add spectroscopic capability to the existing system allowing measurements with good energy resolution (5% at 0.622 MeV), a dynamic range from hundreds of keV up to about 30 MeV, and high counting rate capabilities of MCps. First gamma-ray measurements during the C38 campaign of the JET have been successfully carried out, in particular, in D-He plasmas from three-ion ion cyclotron resonance heating experiments, where the detection of 16.

View Article and Find Full Text PDF

Upgrades to electronic hardware and detector design have been made to the JET thin-foil Faraday cup fast ion loss detector [Darrow et al., Rev. Sci.

View Article and Find Full Text PDF

The JET gamma-ray cameras have been recently upgraded within the gamma-ray camera upgrade project in support of development of JET high performance deuterium plasma scenarios and in preparation of deuterium-tritium experiments. New, dedicated detectors based on a LaBr crystal and silicon photo-multipliers have been developed and replaced pre-existing CsI detectors in all 19 channels. The new instrument gives opportunity of making two-dimensional gamma-ray measurements with a counting rate capability exceeding 1 MCounts/s (MCps) and energy resolution better than 5% at 1.

View Article and Find Full Text PDF

In this work, we describe the solution developed by the gamma ray camera upgrade enhancement project to improve the spectroscopic properties of the existing JET γ-ray camera. Aim of the project is to enable gamma-ray spectroscopy in JET deuterium-tritium plasmas. A dedicated pilot spectrometer based on a LaBr crystal coupled to a silicon photo-multiplier has been developed.

View Article and Find Full Text PDF

Gamma-ray spectroscopy measurements at MHz counting rates have been carried out, for the first time, with a compact spectrometer based on a LaBr scintillator and silicon photomultipliers. The instrument, which is also insensitive to magnetic fields, has been developed in view of the upgrade of the gamma-ray camera diagnostic for α particle measurements in deuterium-tritium plasmas of the Joint European Torus. Spectra were measured up to 2.

View Article and Find Full Text PDF

A conceptual design of a reciprocating fast-ion loss detector for ITER has been developed and is presented here. Fast-ion orbit simulations in a 3D magnetic equilibrium and up-to-date first wall have been carried out to revise the measurement requirements for the lost alpha monitor in ITER. In agreement with recent observations, the simulations presented here suggest that a pitch-angle resolution of ∼5° might be necessary to identify the loss mechanisms.

View Article and Find Full Text PDF

The Joint European Torus (JET) neutron profile monitor ensures 2D coverage of the gamma and neutron emissive region that enables tomographic reconstruction. Due to the availability of only two projection angles and to the coarse sampling, tomographic inversion is a limited data set problem. Several techniques have been developed for tomographic reconstruction of the 2-D gamma and neutron emissivity on JET, but the problem of evaluating the errors associated with the reconstructed emissivity profile is still open.

View Article and Find Full Text PDF

A method of tomographic reconstruction of the neutron emissivity in the poloidal cross section of the Joint European Torus (JET, Culham, UK) tokamak was developed. Due to very limited data set (two projection angles, 19 lines of sight only) provided by the neutron emission profile monitor (KN3 neutron camera), the reconstruction is an ill-posed inverse problem. The aim of this work consists in making a contribution to the development of reliable plasma tomography reconstruction methods that could be routinely used at JET tokamak.

View Article and Find Full Text PDF

The neutron field parameters (fluence and energy distribution) at a specific location outside the JET Torus Hall have been measured by means of super-heated fluid detectors (or "bubble detectors") in combination with an independent, time-of-flight, technique. The bubble detector assemblies were placed at the end of a vertical line of sight at about 16 m from the tokamak mid plane. Spatial distributions of the neutron fluence along the radial and toroidal directions have been obtained using two-dimensional arrays of bubble detectors.

View Article and Find Full Text PDF

The spectral broadening of characteristic γ-ray emission peaks from the reaction (12)C((3)He,pγ)(14)N was measured in D((3)He) plasmas of the JET tokamak with ion cyclotron resonance heating tuned to the fundamental harmonic of (3)He. Intensities and detailed spectral shapes of γ-ray emission peaks were successfully reproduced using a physics model combining the kinetics of the reacting ions with a detailed description of the nuclear reaction differential cross sections for populating the L1-L8 (14)N excitation levels yielding the observed γ-ray emission. The results provide a paradigm, which leverages knowledge from areas of physics outside traditional plasma physics, for the development of nuclear radiation based methods for understanding and controlling fusion burning plasmas.

View Article and Find Full Text PDF

Notwithstanding the advances of the past decades, significant developments are still needed to satisfactorily diagnose “burning plasmas.” D–T plasmas indeed require a series of additional measurements for the optimization and control of the configuration: the 14 MeV neutrons, the isotopic composition of the main plasma, the helium ash, and the redistribution and losses of the alpha particles. Moreover a burning plasma environment is in general much more hostile for diagnostics than purely deuterium plasmas.

View Article and Find Full Text PDF

Recent experiments at JET aimed at producing 4He ions in the MeV range through third harmonic ion cyclotron resonance heating (ICRH) acceleration of 4He beams in a 4He dominated plasma. MeV range D was also present through parasitic ICRH absorption on residual D. In this contribution, we analyze TOFOR neutron spectrometer data from these experiments.

View Article and Find Full Text PDF

The loss of MeV alpha particles from JET plasmas has been measured with a set of thin foil Faraday cup detectors during third harmonic heating of helium neutral beam ions. Tail temperatures of ∼ 2 MeV have been observed, with radial scrape off lengths of a few centimeters. Operational experience from this system indicates that such detectors are potentially feasible for future large tokamaks, but careful attention to screening rf and MHD induced noise is essential.

View Article and Find Full Text PDF

We have examined the observed currents in the front foils of the JET Faraday cup lost alpha particle diagnostic KA-2. In particular, we have sought to understand the currents during Ohmic plasmas for which the ion flux at the detectors was initially assumed to be negligible. We have considered two sources of this current: plasma ions (both deuterium and impurity) in the vicinity of the detector (including charge exchange neutrals) and photoemission from scattered UV radiation.

View Article and Find Full Text PDF

A new high efficiency, high resolution, fast γ-ray spectrometer was recently installed at the JET tokamak. The spectrometer is based on a LaBr3(Ce) scintillator coupled to a photomultiplier tube. A digital data acquisition system is used to allow spectrometry with event rates in excess of 1 MHz expected in future JET DT plasmas.

View Article and Find Full Text PDF

High resolution γ-ray spectroscopy measurements were performed in JET (3He)D plasmas with high energy ion populations driven by radio-frequency (RF) heating. One of the first reactions investigated was 12C(3He,pγ)14N, which was observed at low 3He concentrations. In order to interpret the measurements in this work, cross section data for the 12C(3He,pγ)14N reaction are evaluated.

View Article and Find Full Text PDF

In fusion plasmas gamma ray emission is caused by reactions of fast particles, such as fusion alpha particles, with impurities. Gamma ray spectroscopy at JET has provided valuable diagnostic information on fast fuel as well as fusion product ions. Improvements of these measurements are needed to fully exploit the flux increase provided by future high power experiments at JET and ITER.

View Article and Find Full Text PDF