Publications by authors named "Kip Zimmerman"

Age is a prominent risk factor for cardiometabolic disease, often leading to heart structural and functional changes. However, precise molecular mechanisms underlying cardiac remodeling and dysfunction exclusively resulting from physiological aging remain elusive. Previous research demonstrated age-related functional alterations in baboons, analogous to humans.

View Article and Find Full Text PDF

Studies have consistently shown that psychiatric genetic counseling (pGC) helps people with psychiatric conditions by increasing empowerment and self-efficacy, and addressing emotions like guilt. Yet, it is not routinely provided. Genetic counselors and trainees express low confidence in their ability to provide meaningful pGC, especially in the absence of adequate training.

View Article and Find Full Text PDF

The postmenopausal decrease in circulating estradiol (E2) levels has been shown to contribute to several adverse physiological and psychiatric effects. To elucidate the molecular effects of E2 on the brain, we examined differential gene expression and DNA methylation (DNAm) patterns in the nonhuman primate brain following ovariectomy (Ov) and subsequent subcutaneous bioidentical E2 chronic treatment. We identified several dysregulated molecular networks, including MAPK signaling and dopaminergic synapse response, that are associated with ovariectomy and shared across two different brain areas, the occipital cortex (OC) and prefrontal cortex (PFC).

View Article and Find Full Text PDF

The postmenopausal decrease in circulating estradiol (E2) levels has been shown to contribute to several adverse physiological and psychiatric effects. To elucidate the molecular effects of E2 on the brain, we examined differential gene expression and DNA methylation (DNAm) patterns in the nonhuman primate brain following ovariectomy (Ov) and subsequent E2 treatment. We identified several dysregulated molecular networks, including MAPK signaling and dopaminergic synapse response, that are associated with ovariectomy and shared across two different brain areas, the occipital cortex (OC) and prefrontal cortex (PFC).

View Article and Find Full Text PDF

Age is a prominent risk factor for cardiometabolic disease, and often leads to heart structural and functional changes. However, precise molecular mechanisms underlying cardiac remodeling and dysfunction resulting from physiological aging per se remain elusive. Understanding these mechanisms requires biological models with optimal translation to humans.

View Article and Find Full Text PDF

The prefrontal cortex (PFC) has been implicated as a key brain region responsible for age-related cognitive decline. Little is known about aging-related molecular changes in PFC that may mediate these effects. To date, no studies have used untargeted discovery methods with integrated analyses to determine PFC molecular changes in healthy female primates.

View Article and Find Full Text PDF
Article Synopsis
  • * This study aimed to explore aging-related molecular changes in the livers of healthy female baboons by using an integrated omics approach, analyzing transcriptomics, proteomics, and metabolomics data.
  • * Results showed that certain gene and protein modules correlated positively and negatively with age, revealing that unfolded protein response (UPR) and specific metabolic pathways are involved in protecting the liver from oxidative stress as the baboons age.
View Article and Find Full Text PDF

Fetal liver tissue collected from a nonhuman primate (NHP) baboon model of maternal nutrient reduction (MNR) at four gestational time points (90, 120, 140, and 165 days gestation [dG], term in the baboon is ∼185 dG) was used to quantify MNR effects on the fetal liver transcriptome. 28 transcripts demonstrated different expression patterns between MNR and control livers during the second half of gestation, a developmental period when the fetus undergoes rapid weight gain and fat accumulation. Differentially expressed transcripts were enriched for fatty acid oxidation and RNA splicing-related pathways.

View Article and Find Full Text PDF
Article Synopsis
  • Proteomic analysis of plasma can help in precision medicine by identifying disease biomarkers, but detecting low abundance proteins in plasma is challenging.* -
  • A new mass spectrometry method using tandem mass tags (TMT) and kidney tissue reference samples successfully identified and quantified 820 proteins in nonhuman primate plasma.* -
  • This approach enhances the ability to link low abundance plasma proteins to their tissue origin, potentially increasing the number of disease biomarkers for further research.*
View Article and Find Full Text PDF

Maternal obesity (MO) during pregnancy is linked to increased and premature risk of age-related metabolic diseases in the offspring. However, the underlying molecular mechanisms still remain not fully understood. Using a well-established nonhuman primate model of MO, we analyzed tissue biopsies and plasma samples obtained from post-pubertal offspring (3-6.

View Article and Find Full Text PDF

Background: Reliable and effective label-free quantification (LFQ) analyses are dependent not only on the method of data acquisition in the mass spectrometer, but also on the downstream data processing, including software tools, query database, data normalization and imputation. In non-human primates (NHP), LFQ is challenging because the query databases for NHP are limited since the genomes of these species are not comprehensively annotated. This invariably results in limited discovery of proteins and associated Post Translational Modifications (PTMs) and a higher fraction of missing data points.

View Article and Find Full Text PDF

Gas chromatography-coupled mass spectrometry (GC-MS) has been used in biomedical research to analyze volatile, non-polar, and polar metabolites in a wide array of sample types. Despite advances in technology, missing values are still common in metabolomics datasets and must be properly handled. We evaluated the performance of ten commonly used missing value imputation methods with metabolites analyzed on an HR GC-MS instrument.

View Article and Find Full Text PDF

Background: Triggering receptor expressed on myeloid cells (TREM)-1 is a key mediator of innate immunity previously associated with the severity of inflammatory disorders, and more recently, the inferior survival of lung and liver cancer patients. Here, we investigated the prognostic impact and immunological correlates of expression in breast tumors.

Methods: Breast tumor microarray and RNAseq expression profiles (n=4,364 tumors) were analyzed for associations between gene expression, tumor immune subtypes, distant metastasis-free survival (DMFS) and clinical response to neoadjuvant chemotherapy (NAC).

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a chronic, multisystem, autoimmune inflammatory disease with genomic and non-genomic contributions to risk. We hypothesize that epigenetic factors are a significant contributor to SLE risk and may be informative for identifying pathogenic mechanisms and therapeutic targets. To test this hypothesis while controlling for genetic background, we performed an epigenome-wide analysis of DNA methylation in genomic DNA from whole blood in three pairs of female monozygotic (MZ) twins of European ancestry, discordant for SLE.

View Article and Find Full Text PDF

Background: We performed expression quantitative trait locus (eQTL) analysis in single classical (CL) and non-classical (NCL) monocytes from patients with systemic lupus erythematosus (SLE) to quantify the impact of well-established genetic risk alleles on transcription at single-cell resolution.

Methods: Single-cell gene expression was quantified using qPCR in purified monocyte subpopulations (CD14CD16 CL and CD14CD16 NCL) from SLE patients. Novel analysis methods were used to control for the within-person correlations observed, and eQTLs were compared between cell types and risk alleles.

View Article and Find Full Text PDF

Objectives: Systemic sclerosis (SSc) is a complex disease of unknown aetiology in which inflammation and fibrosis lead to multiple organ damage. There is currently no effective therapy that can halt the progression of fibrosis or reverse it, thus studies that provide novel insights into disease pathogenesis and identify novel potential therapeutic targets are critically needed.

Methods: We used global gene expression and genome-wide DNA methylation analyses of dermal fibroblasts (dFBs) from a unique cohort of twins discordant for SSc to identify molecular features of this pathology.

View Article and Find Full Text PDF

Objectives: Gullah African Americans are descendants of formerly enslaved Africans living in the Sea Islands along the coast of the southeastern U.S., from North Carolina to Florida.

View Article and Find Full Text PDF

Background: Study design is a critical aspect of any experiment, and sample size calculations for statistical power that are consistent with that study design are central to robust and reproducible results. However, the existing power calculators for tests of differential expression in single-cell RNA-seq data focus on the total number of cells and not the number of independent experimental units, the true unit of interest for power. Thus, current methods grossly overestimate the power.

View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH) is a severe neurological disorder with no proven treatment. Inflammation after ICH contributes to clinical outcomes, but the relevant molecular mechanisms remain poorly understood. In studies of peripheral leukocyte counts and mRNA-sequencing (mRNA-seq), our group previously reported that monocytes and Interleukin-8 (IL-8) were important contributors to post-ICH inflammation.

View Article and Find Full Text PDF

Cells from the same individual share common genetic and environmental backgrounds and are not statistically independent; therefore, they are subsamples or pseudoreplicates. Thus, single-cell data have a hierarchical structure that many current single-cell methods do not address, leading to biased inference, highly inflated type 1 error rates, and reduced robustness and reproducibility. This includes methods that use a batch effect correction for individual as a means of accounting for within-sample correlation.

View Article and Find Full Text PDF
Article Synopsis
  • - Systemic lupus erythematosus (SLE) is a complex autoimmune disease that affects multiple organs, and individuals of African ancestry experience it more severely than those of European ancestry, influenced by genetic factors.
  • - Researchers used a detailed method to identify 1,731 genetic factors contributing to SLE differences between African and European populations by analyzing SNPs and their related genes, highlighting the role of interferons and B cell activity in disease progression.
  • - The study emphasizes the significance of understanding ancestry-specific pathways in SLE, which could lead to better-targeted therapies by revealing potential drug candidates that align with the unique biological mechanisms present in different populations.
View Article and Find Full Text PDF

Background: Treatment failure in eosinophilic esophagitis (EoE) is common. We hypothesize that DNA methylation differs between patients by treatment response to topical steroids (oral viscous budesonide), thus offering the potential to inform targeting therapies.

Objective: We sought to identify differentially methylated sites and affiliated genes in pre-treatment oesophageal cells between responders and non-responders and test for accelerated epigenetic ageing in oesophageal cells of EoE patients.

View Article and Find Full Text PDF

In children with autism spectrum disorder (ASD) who present to the gastroenterologist with chronic constipation on a background of colonic inflammation, we have identified two distinct clinical subtypes: (1) patients who experience a sustained state of GI symptomatic remission while on maintenance anti-inflammatory therapy (fast responders) and, (2) those with recurrent right-sided fecal loading requiring regular colon cleanouts during treatment for enterocolitis (slow responders). We hypothesized that a detailed molecular analysis of tissue from the affected region of the colon would provide mechanistic insights regarding the fast versus slow response to anti-inflammatory therapy. To test this, ascending colon biopsy tissues from 35 children with ASD (20 slow responders and 15 fast responders) were analyzed by RNAseq.

View Article and Find Full Text PDF

Background: Systemic sclerosis (SSc) is a rare autoimmune fibrosing disease with an incompletely understood genetic and non-genetic etiology. Defining its etiology is important to allow the development of effective predictive, preventative, and therapeutic strategies. We conducted this epigenomic study to investigate the contributions of DNA methylation to the etiology of SSc while minimizing confounding due to genetic heterogeneity.

View Article and Find Full Text PDF