Publications by authors named "Kiok Kwon"

Recent advancements in polymer materials have enabled the synthesis of bio-based monomers from renewable resources, promoting sustainable alternatives to fossil-based materials. This study presents a novel zwitterionic surfactant, SF, derived from 10-undecenoic acid obtained from castor oil through a four-step reaction, achieving a yield of 78%. SF has a critical micelle concentration (CMC) of 1235 mg/L, slightly higher than the commercial anionic surfactant Rhodacal DS-4 (sodium dodecyl benzene sulfonate), and effectively stabilizes monomer droplets, leading to excellent conversion and stable latex formation.

View Article and Find Full Text PDF

Density multiplication in nanopatterning is one of the most efficient techniques for increasing the resolution of the inherent patterns. Thus far, most of the density multiplication techniques integrate bottom-up (or top-down) patterning onto guide patterns prepared by the top-down approach. Although the bottom-up approach exhibits several advantages of cost-effectiveness and high resolution, very few studies have reported bottom-up patterning within a bottom-up template.

View Article and Find Full Text PDF

Tannic acid (TA) can be used as an additive to improve the properties of hydrogels, but it acts as a radical scavenger, which hinders radical polymerization. In this study, we successfully and easily synthesized a TA-incorporated 2-acrylamido-2-methylpropanesulfonic acid (AMPS) hydrogel using an electron beam (E-beam) in a one-pot process at room temperature. TA successfully grafted onto AMPS polymer chains under E-beam irradiation, but higher TA content reduced grafting efficiency and prevented hydrogel formation.

View Article and Find Full Text PDF

Photoreactive pressure-sensitive adhesives (PSAs) were prepared by grafting mono- or difunctional photoreactive monomers onto acrylic PSA, and their adhesion properties were evaluated before and after ultraviolet (UV) curing for application as dicing tape. In this study, the NCO-terminated difunctional photoreactive monomer (NDPM) was newly synthesized and compared with 2-acryloxyloxyethyl isocyanate (AOI), a monofunctional monomer. The 180° peel strengths of pristine and photoreactive PSAs were similar before UV curing (1850-2030 gf/25 mm).

View Article and Find Full Text PDF

Developing a high-performing hydrogel with long-lasting skin adhesion, high ionic conductivity, mechanical stability, and fatigue resistance is a crucial issue in the field of wearable electronic devices. Because of their weak mechanical properties, zwitterion-based hydrogels are not suitable for application in wearable strain sensors despite their excellent adhesion to the skin. In this study, a hydrogel of polymer without additive was prepared by using polymerizable monomers consisting of zwitterionic 3-(1-vinyl-3-imidazolio)propanesulfonate (VIPS), anionic 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPSs), and acrylamide (AAm); the hydrogel is abbreviated as P(AMPSs/VIPS--AAm).

View Article and Find Full Text PDF

In this study, ionic conductive hydrogels were prepared with 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS). Acrylic acid (AA), acrylamide (AAm), and 2-hydroxyethyl acrylate (HEA) were used as comonomers to complement the adhesion properties and ion conductivity of AMPS hydrogels. Hydrogels were prepared by irradiating a 20 kGy dose of E-beam to the aqueous monomer solution.

View Article and Find Full Text PDF

The long-range alignment of supramolecular structures must be engineered as a first step toward advanced nanopatterning processes aimed at miniaturizing features to dimensions below 5 nm. This study introduces a facile method of directing the orientation of supramolecular columns over wafer-scale areas using faceted surfaces. Supramolecular columns with features on the sub-5 nm scale were highly aligned in a direction orthogonal to that of the facet patterning on unidirectional and nanoscopic faceted surface patterns.

View Article and Find Full Text PDF

Epoxy structural adhesives have strong adhesion, minimal shrinkage and high thermal and chemical resistance. However, despite these excellent properties, their high-energy impact resistance should be improved to satisfy the increasing demands of the automotive industry. For this reason, we used four types of silica nanoparticles with different surface groups, such as polydimethylsiloxane (PDMS), hydroxyl, epoxy and amine groups, as toughening agents and examined their effect on the glass transition temperature (), crosslinking density and phase separation of epoxy structural adhesives.

View Article and Find Full Text PDF

To improve the heat resistance of acrylic-based pressure-sensitive adhesive (PSA), silicone-block-containing acrylic PSAs (SPSAs) were synthesized using a polydimethylsiloxane (PDMS)-based macro-azo-initiator (MAI). To evaluate the heat resistance of the PSA films, the probe tack and 90° peel strength were measured at different temperatures. The acrylic PSA showed that its tack curves changed from balanced debonding at 25 °C to cohesive debonding at 50 °C and exhibited a sharp decrease.

View Article and Find Full Text PDF

Controlling the orientation of highly periodic supramolecular structures of small feature size (<5 nm) is the first step for potential applications in optoelectronics, membranes, and template synthesis. A new method, namely, laser photothermal writing, is introduced to direct the orientation of supramolecular columns over a large area. Supramolecular columns consisting of taper-shaped molecules with long aliphatic tail groups are aligned by a thermal gradient, which is induced by exposing a near-infrared laser beam to a graphene photothermal conversion layer.

View Article and Find Full Text PDF

The fabrication of an ultra-dense, highly periodic nanoparticle array from a soft template is one of the most important issues in the fields of material science and nanotechnology. To date, block copolymer (BCP) structures have been primarily used as templates for fabricating highly periodic nanoparticle arrays with high areal densities. Herein, we demonstrate for the first time the use of a supramolecular dendrimer assembly for the formation of a highly ordered nanoparticle array with a high areal density of ~20 Tdot/in, four times larger than that of the currently reported BCP-based nanoparticle arrays.

View Article and Find Full Text PDF

In nanotechnology and microelectronics research, the generation of an ultradense, single-grain nanostructure with a long-range lateral order is challenging. In this paper, we report upon a new solvent-annealing method using a double-sandwich confinement to promote the formation of a large-area, single-domain array (>0.3 × 0.

View Article and Find Full Text PDF

Controlling the organization of self-assembling building blocks over a large area is crucial for lithographic tools based on the bottom-up approach. However, the fabrication of liquid crystal (LC) defect patterns with a particular ordering still remains a challenge because of the limited close-packed morphologies of LC defects. Here, we introduce a multiple-stamping domain separation method for the control of the dimensions and organization of LC defect structures.

View Article and Find Full Text PDF

Developing large-area, single domain of organic soft-building blocks such as block copolymers, colloids, and supramolecular materials is one of the most important issues in the materials science and nanotechnology. Owing to their small sizes, complex molecular architectures, and high mobility, supramolecular materials are not well-suited for building large area, single domain structures. In the described study, a single domain of supramolecular columnar dendrimers was created over large area.

View Article and Find Full Text PDF