Publications by authors named "Kinson C Kam"

Aliovalent substitutions in layered transition-metal cathode materials has been demonstrated to improve the energy densities of lithium ion batteries, with the mechanisms underlying such effects incompletely understood. Performance enhancement associated with Ti substitution of Co in the cathode material Li1(NixMnxCo1-2x)O2 were investigated using density functional theory calculations, including Hubbard-U corrections. An examination of the structural and electronic modifications revealed that Ti substitution reduces the structural distortions occurring during delithiation due to the larger cation radius of Ti(4+) relative to Co(3+) and the presence of an electron polaron on Mn cations induced by aliovalent Ti substitution.

View Article and Find Full Text PDF

Intercalation compounds such as transition metal oxides or phosphates are the most commonly used electrode materials in Li-ion and Na-ion batteries. During insertion or removal of alkali metal ions, the redox states of transition metals in the compounds change and structural transformations such as phase transitions and/or lattice parameter increases or decreases occur. These behaviors in turn determine important characteristics of the batteries such as the potential profiles, rate capabilities, and cycle lives.

View Article and Find Full Text PDF

A basic approach was optimized for the synthesis of highly selective and sensitive in situ mesoporous (MCM) type imprinted silica polymers for the detection of dipicolinic acid (DPA) using europium as a reporter. DPA is a ubiquitous biochemical marker available during the germination event of endospore-forming bacteria such as Bacillus . Additionally, an MCM-MIP (molecularly imprinted polymeric phenomena) detector and a companion MCM-non-surface-MIP detector were synthesized using europium reporters for the sensing of DPA under optimized laboratory conditions.

View Article and Find Full Text PDF

An in situ mesopourous surface imprinted polymeric (SIP) sensor was synthesized for a highly sensitive, selective, and kinetically faster detection of the high-vapor-pressure nerve gas surrogate methyl salicylate (MES). Visual detection occurred on the filtrate thin films at 25 pM. Other nerve gas surrogates, TP, DMP, DMMP, PMP, and 1,4-thioxane, were tested and showed a decrease in sensitivity compared to MES.

View Article and Find Full Text PDF