is an important foodborne pathogen. Cholix cytotoxin (Cholix), produced by , is a novel eukaryotic elongation factor 2 (eEF2) adenosine diphosphate ribosyltransferase that causes host cell death by inhibiting protein synthesis. However, the role of Cholix in the infectious diseases caused by remains unclear.
View Article and Find Full Text PDFUnlabelled: imaging of bacterial infection models enables noninvasive and temporal analysis of individuals, enhancing our understanding of infectious disease pathogenesis. Conventional imaging methods for bacterial infection models involve the insertion of the bacterial luciferase LuxCDABE into the bacterial genome, followed by imaging using an expensive ultrasensitive charge-coupled device (CCD) camera. However, issues such as limited light penetration into the body and lack of versatility have been encountered.
View Article and Find Full Text PDFIntracellular bacteria are able to survive and grow in host cells and often cause serious infectious diseases. The B subunit of the subtilase cytotoxin (SubB) found in enterohemorrhagic O113:H21 recognizes sialoglycans on cell surfaces and triggers the uptake of cytotoxin by the cells, meaning that Sub B is a ligand molecule that is expected to be useful for drug delivery into cells. In this study, we conjugated SubB to silver nanoplates (AgNPLs) for use as an antibacterial drug and examined their antimicrobial activity against intracellularly infecting ().
View Article and Find Full Text PDFInfection of mice with Citrobacter rodentium is a useful model for studying the pathogenicity of enteropathogenic and enterohemorrhagic Escherichia coli, pathogens that have a close association with humans. Here, we provide a protocol detailing the approaches for non-canonical inflammasome analysis in a mouse model of C. rodentium infection, including preparation of bacteria, oral administration of bacteria to mice, counting colony-forming units to quantify bacterial colonization, and analysis of expression and activation of inflammasome-related factors.
View Article and Find Full Text PDFSubtilase cytotoxin (SubAB) is a major virulence factor produced by eae-negative Shiga-toxigenic Escherichia coli (STEC) that can cause fatal systemic complications. SubAB binds to target cells through multivalent interactions between its B-subunit pentamer and receptor molecules such as glycoproteins with a terminal N-glycolylneuraminic acid (Neu5Gc). We screened randomized multivalent peptide libraries synthesized on a cellulose membrane and identified a series of tetravalent peptides that efficiently bind to the receptor-binding region of the SubAB B-subunit pentamer.
View Article and Find Full Text PDFAdvances in drug delivery systems (DDSs) have enabled the specific delivery of drugs to target cells. Subtilase cytotoxin (SubAB) produced by certain enterohemorrhagic strains induces endoplasmic reticulum (ER) stress and suppresses nitric oxide generation in macrophages. We previously reported that modification of SubAB with poly(D,L-lactide-co-glycolic) acid (PLGA) nanoparticles (SubAB-PLGA NPs) increased intracellular uptake of SubAB and had an anti-inflammatory effect on macrophages.
View Article and Find Full Text PDFBexarotene selectively activates retinoid X receptor, which is a commonly used anticancer agent for cutaneous T-cell lymphoma. In this study, we aimed to investigate the anticancer effect of bexarotene and its underlying mechanism in ovarian cancer in vitro. The ES2 and NIH:OVACAR3 ovarian cancer cell lines were treated with 0, 5, 10, or 20 µM of bexarotene.
View Article and Find Full Text PDFSubtilase cytotoxin (SubAB) is an AB toxin mainly produced by the locus of enterocyte effacement-negative Shiga-toxigenic (STEC) strain such as O113:H21, yet the contribution of SubAB to STEC infectious disease is unclear. We found that SubAB reduced activation of the STEC O113:H21 infection-induced non-canonical NLRP3 inflammasome and interleukin (IL)-1β and IL-18 production in murine macrophages. Downstream of lipopolysaccharide signaling, SubAB suppressed caspase-11 expression by inhibiting interferon-β/STAT1 signaling, followed by disrupting formation of the NLRP3/caspase-1 assembly.
View Article and Find Full Text PDFPathogenic microorganisms produce various virulence factors, e.g., enzymes, cytotoxins, effectors, which trigger development of pathologies in infectious diseases.
View Article and Find Full Text PDFShiga-toxigenic Escherichia coli (STEC) infection causes severe bloody diarrhea, renal failure, and hemolytic uremic syndrome. Recent studies showed global increases in Locus for Enterocyte Effacement (LEE)-negative STEC infection. Some LEE-negative STEC produce Subtilase cytotoxin (SubAB), which cleaves endoplasmic reticulum (ER) chaperone protein BiP, inducing ER stress and apoptotic cell death.
View Article and Find Full Text PDFShiga-toxigenic Escherichia coli (STEC) is a major bacterium responsible for disease resulting from foodborne infection, including bloody diarrhea and hemolytic uremic syndrome. STEC produces important virulence factors such as Shiga toxin (Stx) 1 and/or 2. In the STEC family, some locus of enterocyte effacement-negative STEC produce two different types of cytotoxins, namely, Stx2 and subtilase cytotoxin (SubAB).
View Article and Find Full Text PDFPoly(D,L-lactide-co-glycolic) acid (PLGA) is a synthetic copolymer that has been used to design micro/nanoparticles as a carrier for macromolecules, such as protein and nucleic acids, that can be internalized by the endocytosis pathway. However, it is difficult to control the intracellular delivery to target organelles. Here we report an intracellular delivery system of nanoparticles modified with bacterial cytotoxins to the endoplasmic reticulum (ER) and anti-inflammatory activity of the nanoparticles.
View Article and Find Full Text PDFSubtilase cytotoxin (SubAB) is a member of bacterial AB toxin produced by certain enterohemorrhagic E. coli strains which cleaves host chaperone BiP in endoplasmic reticulum (ER), leading to ER stress-mediated cytotoxicity. Previous study suggested that protein disulfide isomerase (PDI), an enzyme which catalyzes the formation and breakage of disulfide bonds in proteins, regulates AB toxin such as cholera toxin by unfolding of A subunit, leading to its translocation into cytosol to induce disease.
View Article and Find Full Text PDFSubtilase cytotoxin (SubAB) is a virulence factor produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli strains. The toxin recognizes sialoglycans for entry and cleaves an endoplasmic reticulum chaperon, binding immunoglobulin protein, to cause cell death. However, no systematic screening has yet been performed to identify critical host factors.
View Article and Find Full Text PDFVibrio cholerae produced-Cholix toxin (Cholix) is a cytotoxin that ADP-ribosylates eukaryotic elongation factor 2, inhibiting protein synthesis, and inducing apoptosis. Here, we identified prohibitin (PHB) 1 and 2 as novel Cholix-interacting membrane proteins in immortalised human hepatocytes and HepG2 cells by Cholix immunoprecipitation assays. The expression level of PHB1 was decreased by Cholix after a 12hr incubation.
View Article and Find Full Text PDFHelicobacter pylori (Hp) infection is related to the pathogenesis of chronic gastric disorders and extragastric diseases. Here, we examined the anorexigenic and anxiogenic effects of Hp vacuolating cytotoxin A (VacA) through activation of hypothalamic urocortin1 (Ucn1). VacA was detected in the hypothalamus after peripheral administration and increased Ucn1 mRNA expression and c-Fos-positive cells in the hypothalamus but not in the nucleus tractus solitarius.
View Article and Find Full Text PDFShiga toxigenic (STEC) are responsible for a worldwide foodborne disease, which is characterized by severe bloody diarrhea and hemolytic uremic syndrome (HUS). Subtilase cytotoxin (SubAB) is a novel AB toxin, which is produced by Locus for Enterocyte Effacement (LEE)-negative STEC. Cleavage of the BiP protein by SubAB induces endoplasmic reticulum (ER) stress, followed by induction of cytotoxicity in vitro or lethal severe hemorrhagic inflammation in mice.
View Article and Find Full Text PDFEnterohemorrhagic Escherichia coli (EHEC) produces Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2). Nitric oxide (NO), which acts as an antimicrobial defense molecule, was found to enhance the production of Stx1 and Stx2 in EHEC under anaerobic conditions. Although EHEC O157 has two types of anaerobic NO reductase genes, an intact norV and a deleted norV, in the deleted norV-type EHEC, a high concentration of NO (12-29 μmol/L, maximum steady-state concentration) is required for enhanced Stx1 production and a low concentration of NO (~12 μmol/L, maximum steady-state concentration) is sufficient for enhanced Stx2 production under anaerobic conditions.
View Article and Find Full Text PDFCholix toxin (Cholix) from Vibrio cholerae is a potent virulence factor exhibiting ADP-ribosyltransferase activity on eukaryotic elongation factor 2 (eEF2) of host cells, resulting in the inhibition of protein synthesis. Administration of Cholix or its homologue Pseudomonas exotoxin A (PEA) to mice causes lethal hepatocyte damage. In this study, we demonstrate cytotoxicity of Cholix on human hepatocytes in the presence of tumor necrosis factor α (TNF-α), which has been reported to play a fatal role in PEA administered to mice.
View Article and Find Full Text PDFHelicobacter pylori, a major cause of gastroduodenal diseases, produces vacuolating cytotoxin (VacA) and cytotoxin-associated gene A (CagA), which seem to be involved in virulence. VacA exhibits pleiotropic actions in gastroduodenal disorders via its specific receptors. Recently, we found that VacA induced the phosphorylation of cellular Src kinase (Src) at Tyr418 in AZ-521 cells.
View Article and Find Full Text PDFHelicobacter pylori (H. pylori), a major cause of gastroduodenal diseases, produces VacA, a vacuolating cytotoxin associated with gastric inflammation and ulceration. The C-terminal domain of VacA plays a crucial role in receptor recognition on target cells.
View Article and Find Full Text PDF