Publications by authors named "Kingsley Miyanda Tembo"

T-cell acute lymphoblastic leukemia (T-ALL) represents a spectrum of hematological malignancies that affect human health. Metastasis and chemotherapeutic drug resistance are the primary causes of mortality in patients with T-ALL. Sodium-hydrogen antiporter 1 (NHE1) is established to serve a role in metastasis and drug resistance in numerous types of cancer; however, the function of NHE1 in T-ALL remains to be elucidated.

View Article and Find Full Text PDF

Metastasis is the major cause of death in patients with non-small cell lung cancer (NSCLC), and epithelial-mesenchymal transition (EMT) has been observed to be one of the key regulators of metastasis in certain cancers as it confers an invasive phenotype. CD133 is a widely used cancer stem cell (CSC) marker, and CD133-positive cancer cells are thought to be tumor-initiating cells with CSC characteristics, while CXCR4, a stromal-derived-factor-1 specific chemokine receptor, is highly expressed in NSCLC tissues and participates in cancer progression by regulating cell anti-apoptosis. We previously demonstrated that CXCR4 promotes NSCLC chemoresistance by upregulating CYP1B1, however, the relationship of CD133, CXCR4 and EMT processes in NSCLC metastasis are unclear.

View Article and Find Full Text PDF

Chemoresistance is the main cause of treatment failure and high mortality in advanced lung cancer. Cisplatin, an important chemotherapeutic agent for lung cancer, has been observed to show enormously reduced chemotherapeutic efficacy owing to the development of chemoresistance. CXCR4, a stromal-derived-factor-1 specific chemokine receptor, is highly expressed in non-small cell lung cancer (NSCLC) tissues and participates in cancer progression by regulating cell growth, apoptosis or invasion.

View Article and Find Full Text PDF