Graphitic carbon nitride (g-CN) is a widely studied visible-light-active photocatalyst for low cost, non-toxicity, and facile synthesis. Nonetheless, its photocatalytic efficiency is below par, due to fast recombination of charge carriers, low surface area, and insufficient visible light absorption. Thus, the research on the modification of g-CN targeting at enhanced photocatalytic performance has attracted extensive interest.
View Article and Find Full Text PDFLithium bis(fluorosulfonyl)imide (Li-TFSI) is an efficient p-dopant that has been used to enhance the conductivity of perovskite solar cells (PSCs). However, the performance of the corresponding devices is still not satisfactory due to the impact of Li-TFSI on the fill factor and the short-circuit current density of these PSCs. Herein, a new Mn complex [(Mn(Me-tpen)(ClO4)2-)]2+ was introduced as a p-type dopant into spiro-OMeTAD and was successfully applied as a hole transport material (HTM) for PSCs.
View Article and Find Full Text PDFAlthough nanotube is among the most effective morphology of Titania due to its unilateral pathway for photo-generated charge transfer and mechanical stability, its performance is still hampered by high recombination. In the present study, to further improve the photocatalytic degradation performance of Titania, univalent elements of H and Na were respectively ion-exchanged into the Titania nanotubes (TNTs). The photocatalyst was characterized using XRD, TEM, ICP-AES, and FTIR.
View Article and Find Full Text PDF2,{2}',7,{7}'-Tetrakis(,-di--methoxyphenylamine)-9,{9}'-spiro-bi-fluorene(spiro-OMeTAD) has often been used as a hole-transporting material (HTM) in mesoscopic perovskite solar cells (PSCs). However, its potential applications are limited due to its poor conductivity of approximately 10 to 10 cm V s in pristine form, and this influences the stability and intrinsic hole conductivity of the device. In this work, a Mn complex [(Mn(Me-tpen)(ClO) )] is introduced as a p-dopant to improve the properties of spiro-OMeTAD-based PSCs, including the optical, electrical, conductivity, and stability properties.
View Article and Find Full Text PDFIt is important that a pollution remediation system be able to cater for a variety of pollutant species present in the water to be treated. The aim of this study was to utilise a series of commercial zeolites (H-MOR, H-β, and H-ZSM5) for the concomitant adsorption and photodegradation of Cu and tetracycline (TC) molecules. The adsorbent cum photocatalyst was characterised by SEM and FTIR.
View Article and Find Full Text PDF