Publications by authors named "Kinga Nawalany"

Article Synopsis
  • The study investigates the photosensitizing effects of a specific porphyrin compound (p-THPP) modified with various lengths of polyethylene glycol (PEG) on cancer cells.
  • The results show that attaching PEG reduces the toxicity of p-THPP in the dark and enhances its effectiveness as a treatment when exposed to light, with the 2000 Da PEG variant demonstrating the best performance.
  • Additionally, while liposomal encapsulation did not enhance the overall photodynamic therapy effect, it did increase the apoptosis-inducing potential of the PEGylated compound in both cancer cell lines.
View Article and Find Full Text PDF

Two photosensitizing systems: (1) tetrakis(4-hydroxyphenyl)porphyrin (p-THPP) encapsulated in sterically stabilized liposomes (SSL) and (2) p-THPP functionalized by covalent attachment of poly(ethylene glycol) (p-THPP-PEG(2000)) were studied in vitro. The dark and photo cytotoxicity of these systems were evaluated on two cell lines: HCT 116, a human colorectal carcinoma cell line, and DU 145, a prostate cancer cell line and compared with these determined for free p-THPP. It was demonstrated that both encapsulation in liposomes as well as attachment of PEG chain result in pronounced reduction of the dark cytotoxicity of the parent porphyrin.

View Article and Find Full Text PDF

5,10,15,20-Tetrakis(4-hydroxyphenyl)porphyrin was functionalized by covalent attachment of poly(ethylene glycol) (PEG) chains of various molecular weights, 350, 2000, and 5000 Da. The properties of PEG-functionalized tetraarylporphyrins in aqueous solution and their interactions with liposomes have been studied. Electronic absorption spectroscopy, dynamic light scattering, atomic force microscopy, and fluorescence quenching were used to monitor aggregation of porphyrin chromophores and behavior of the attached PEG chains in the aqueous solution.

View Article and Find Full Text PDF

The correlation between structural and physical properties of lipid membrane and its drug-loading efficiency were studied. The properties of bilayer were altered by incorporation of several lipidic modifiers: cholesterol, oleic acid, methyl oleate, and pegylated lipid. By using the molecular probe technique it was demonstrated that the membrane properties, such as micropolarity, microviscosity and free volume were considerably changed by incorporation of the modifiers.

View Article and Find Full Text PDF

A system of poly(ethylene glycol) bound tetraarylporphyrin entrapped in liposomal membranes was investigated. The interactions between the 5-(4-hydroxymethylphenyl)-10,15,20-tritolylporphyrin (Po) covalently attached to the poly(ethylene glycol) chain (PEG-Po), and phosphatidylcholine liposomes in the aqueous solution were studied. The adsorption of the investigated polymer to lipid vesicles was confirmed by measurements of dynamic light scattering and zeta potential.

View Article and Find Full Text PDF