Publications by authors named "Kinga K Tomczak"

Introduction: During the COVID-19 pandemic, an influx of adolescents presented worldwide with acute onset of functional tic-like behaviors (FTLBs). Our goal was to evaluate psychosocial factors around onset, to elucidate outcomes after pandemic isolation protocols were lifted, and to examine therapy and medication management.

Methods: A retrospective review was performed of 56 patients ages 10-18 years with new-onset FTLBs seen at Boston Children's Hospital beginning in March 2020.

View Article and Find Full Text PDF

Benign paroxysmal vertigo of childhood (or recurrent vertigo of childhood) is the most common cause of vertigo in young children. It is considered a pediatric migraine variant or precursor disorder, and children with the condition have an increased likelihood of developing migraine later in life than the general population. Episodes are typically associated with room-spinning vertigo in conjunction with other migrainous symptoms (e.

View Article and Find Full Text PDF

Obsessive compulsive disorder (OCD) and chronic tic disorders (CTD) including Tourette Syndrome (TS) are often comorbid conditions. While some patients present with distinct symptoms of CTD and/or OCD, a subset of patients demonstrate a unique overlap of symptoms, known as Tourettic OCD (TOCD), in which tics, compulsions, and their preceding premonitory urges are overlapping and tightly intertwined. The specific behaviors seen in TOCD are typically complex tic-like behaviors although with a compulsive and partially anxious nature reminiscent of OCD.

View Article and Find Full Text PDF
Torticollis.

J Child Neurol

March 2013

Torticollis refers to a twisting of the head and neck caused by a shortened sternocleidomastoid muscle, tipping the head toward the shortened muscle, while rotating the chin in the opposite direction. Torticollis is seen at all ages, from newborns to adults. It can be congenital or postnatally acquired.

View Article and Find Full Text PDF

Muscle contraction relies on a highly organized intracellular network of membrane organelles and cytoskeleton proteins. Among the latter are the intermediate filaments (IFs), a large family of proteins mutated in more than 30 human diseases. For example, mutations in the DES gene, which encodes the IF desmin, lead to desmin-related myopathy and cardiomyopathy.

View Article and Find Full Text PDF

Nemaline myopathy (NM) is a congenital myopathy characterized by muscle weakness and nemaline bodies in affected myofibers. Five NM genes, all encoding components of the sarcomeric thin filament, are known. We report identification of a sixth gene, CFL2, encoding the actin-binding protein muscle cofilin-2, which is mutated in two siblings with congenital myopathy.

View Article and Find Full Text PDF

Myoblast fusion is a highly regulated process that is important during muscle development and myofiber repair and is also likely to play a key role in the incorporation of donor cells in myofibers for cell-based therapy. Although several proteins involved in muscle cell fusion in Drosophila are known, less information is available on the regulation of this process in vertebrates, including humans. To identify proteins that are regulated during fusion of human myoblasts, microarray studies were performed on samples obtained from human fetal skeletal muscle of seven individuals.

View Article and Find Full Text PDF

Nemaline myopathy (NM) is the most common of several congenital myopathies that present with skeletal muscle weakness and hypotonia. It is clinically heterogeneous and the diagnosis is confirmed by identification of nemaline bodies in affected muscles. The skeletal muscle alpha-actin gene (ACTA1) is one of five genes for thin filament proteins identified so far as responsible for different forms of NM.

View Article and Find Full Text PDF

Skeletal muscle differentiation is a complex, highly coordinated process that relies on precise temporal gene expression patterns. To better understand this cascade of transcriptional events, we used expression profiling to analyze gene expression in a 12-day time course of differentiating C2C12 myoblasts. Cluster analysis specific for time-ordered microarray experiments classified 2895 genes and ESTs with variable expression levels between proliferating and differentiating cells into 22 clusters with distinct expression patterns during myogenesis.

View Article and Find Full Text PDF