Severity of warming predicted by climate models depends on their Transient Climate Response (TCR). Inter-model spread of TCR has persisted at ~ 100% of its mean for decades. Existing observational constraints of TCR are based on observed historical warming response to historical forcing and their uncertainty spread is just as wide, mainly due to forcing uncertainty, and especially that of aerosols.
View Article and Find Full Text PDFPrevious studies suggested that the Amazon, the largest rainforest on Earth, changes from a CO sink to a CO source during the dry/fire season. However, the biospheric contributions to atmospheric CO are not well understood during the two main seasons, the dry/fire season and the wet season. In this article, we utilize Orbiting Carbon Observatory 2 (OCO-2) Solar-Induced Fluorescence (SIF) to explore photosynthetic activity during the different seasons.
View Article and Find Full Text PDFFrequency-upconverted fluorescence and stimulated emission induced by multiphoton absorption (MPA) have attracted much interest. As compared with low-order MPA processes, the construction of high-order MPA processes is highly desirable and rather attractive, yet remains a formidable challenge due to its inherent low transition probability. We report the observation of the first experimental frequency-upconverted fluorescence and stimulated emission by simultaneous six-photon excitation in an organic molecular system.
View Article and Find Full Text PDFWe propose and substantiate experimentally the cascaded rotational Doppler effect for interactions of spinning objects with light carrying spin angular momentum. Based on mirror symmetry for electromagnetic interactions, we reveal that the frequency shift can be doubled through cascading two rotational Doppler processes that are mirror-imaged to each other. This effect is further experimentally verified with a rotating half-wave plate, and the mirror-imaging process is achieved by reflecting the frequency-shifted circularly polarized wave upon a mirror with a quarter-wave plate in front of it.
View Article and Find Full Text PDFPhotonic metasurfaces, a kind of 2D structured medium, represent a novel platform to manipulate the propagation of light at subwavelength scale. In linear optical regime, many interesting topics such as planar meta-lenses, metasurface optical holography, and so on have been widely investigated. Recently, metasurfaces have gone into the nonlinear optical regime.
View Article and Find Full Text PDFInterest in the "Interdecadal Pacific Oscillation (IPO)" in the global SST has surged recently on suggestions that the Pacific may be the source of prominent interdecadal variations observed in the global-mean surface temperature possibly through the mechanism of low-frequency modulation of the interannual El Nino-Southern Oscillation (ENSO) phenomenon. IPO was defined by performing empirical orthogonal function (EOF) analysis of low-pass filtered SST. The low-pass filtering creates its unique set of mathematical problems-in particular, mode mixing-and has led to some questions, many unanswered.
View Article and Find Full Text PDFElectric-field-induced second harmonic generation (EFISH), a third-order nonlinear process, arises from the interaction between the electric field of an external bias and that of two incident photons. EFISH can be used to dynamically control the nonlinear optical response of materials and is therefore promising for active nonlinear devices. However, it has been challenging to achieve a strong modulation with EFISH in conventional nonlinear materials.
View Article and Find Full Text PDFRuthenium(II) tris(bipyridyl) cationic complex (Ru(bpy)) incorporated UiO-67 (Universitetet i Oslo) nanoscale metal-organic frameworks (NMOFs) with an average diameter of ∼92 nm were developed as theranostic nanoplatform for in vitro two-photon fluorescence imaging and photodynamic therapy. After incorporation into porous UiO-67 nanoparticles, the quantum yield, luminescence lifetime, and two-photon fluorescence intensity of Ru(bpy) guest molecules were much improved owing to the steric confinement effect of MOF pores. Benefiting from these merits, the as-synthesized nanoparticles managed to be internalized by A549 cells while providing excellent red fluorescence in cytoplasm upon excitation with 880 nm irradiation.
View Article and Find Full Text PDFA series of highly extended π-conjugated ladder-type oligo(p-phenylene)s containing up to 10 phenyl rings with (L)-Ph(n)-NPh (n=7-10) or without diphenylamino endcaps (L)-Ph(n) (n=7 and 8) were synthesized and investigated for their multiphoton absorption properties for frequency upconverted blue ASE/lasing. Extremely large two-photon absorption (2PA) cross-sections and highly efficient 2PA ASE/lasing with ultralow threshold were achieved. (L)-Ph(10)-NPh exhibits the highest intrinsic 2PA cross-section of 3643 GM for a blue emissive organic fluorophore reported so far.
View Article and Find Full Text PDFIn this study, we report fluorescent organic nanoprobes with intense blue, green, and orange-red emissions prepared by self-assembling three carbazole derivatives into nanorods/nanoparticles. The three compounds consist of two or four electron-donating carbazole groups linked to a central dicyanobenzene electron acceptor. Steric hindrance from the carbazole groups leads to noncoplanar 3D molecular structures favorable to fluorescence in the solid state, while the donor-acceptor structures endow the molecules with good two-photon excited emission properties.
View Article and Find Full Text PDFA blended bimolecular exciplex formation was demonstrated between two individual donor and acceptor molecules, which are tris(4-carbazoyl-9-ylphenyl)amine (TCTA) and 2,4,6-tris(3'-(pyridin-3-yl)biphenyl-3-yl)-1,3,5-triazine (Tm3PyBPZ). The photoluminescence spectrum of the exciplex in the solid state showed an emission with a peak around 514 nm (∼2.49 eV).
View Article and Find Full Text PDFMetasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities.
View Article and Find Full Text PDFThe synthesis, characterization, photophysics, lipophilicity, and cellular properties of new phosphorescent ruthenium(II) polypyridine complexes functionalized with a dibenzocyclooctyne (DIBO) or amine moiety [Ru(N^N)2 (L)](PF6 )2 are reported (L=4-(13-N-(3,4:7,8-dibenzocyclooctyne-5-oxycarbonyl) amino-4,7,10-trioxa-tridecanyl-aminocarbonyl-oxy-methyl)-4'-methyl-2,2'-bipyridine bpy-DIBO, N^N=2,2'-bipyridine bpy (1 a), 1,10-phenanthroline phen (2 a); L=4-(13-amino-4,7,10-trioxa-tridecanylaminocarbonyl-oxy-methyl)-4'-methyl-2,2'-bipyridine bpy-NH2 , N^N=bpy (1 b), phen (2 b)). The strain-promoted alkyne-azide cycloaddition (SPAAC) reaction of the DIBO complexes 1 a and 2 a with benzyl azide were studied. Also, the DIBO complexes 1 a and 2 a can selectively label N-azidoglycans located on the surface of CHO-K1 and A549 cells that were pretreated with 1,3,4,6-tetra-O-acetyl-N-azidoacetyl-D-mannosamine (Ac4 ManNAz).
View Article and Find Full Text PDFChem Commun (Camb)
May 2013
Star-shaped ladder-type ter(p-phenylene)s exhibit remarkably efficient multiphoton absorption properties with 2PA cross-section up to 2579 GM at 700 nm and 3PA cross-section up to 3.35 × 10(-76) cm(6) s(2) in the femtosecond regime for a blue-emissive molecule despite having such a short π-conjugated framework.
View Article and Find Full Text PDFChem Commun (Camb)
April 2013
Novel biocompatible cyanines show not only a very large two-photon cross-section of up to 5130 GM at 910 nm in aqueous medium for high-contrast and -brightness two-photon fluorescence live cell imaging but also highly selective subcellular localization properties including localization of mitochondria and lysosomes.
View Article and Find Full Text PDFThe hydroxyl radical (OH) plays an important role in middle atmospheric photochemistry, particularly in ozone (O(3)) chemistry. Because it is mainly produced through photolysis and has a short chemical lifetime, OH is expected to show rapid responses to solar forcing [e.g.
View Article and Find Full Text PDFWe report the synthesis and investigation of multiphoton absorption properties of a novel series of diphenylamino-end-capped ladder-type oligo(p-phenylene)s which exhibit greatly enhanced and efficient multiphoton (from two- to five-photon) upconverted blue photoluminescence with which the record-high intrinsic three-photon absorption cross-section of 4.56 × 10(-76) cm(6) s(2) in the femtosecond regime has been obtained. Exceptionally efficient two- to five-photon-excited lasing in the blue region has also been demonstrated in which the highest two-photon-excited lasing efficiency of 0.
View Article and Find Full Text PDFA series of luminescent multinuclear platinum(II) alkynyl complexes containing triethynylbenzene or 1,4-bis(3,5-diethynylphenyl)buta-1,3-diyne as cores has been successfully synthesized and characterized. The electronic absorption, emission, nanosecond transient absorption and electrochemical properties of these complexes have been reported. These complexes show long-lived emissions in degassed benzene solution and in alcoholic glass at 77 K.
View Article and Find Full Text PDFRemarkably strong multiphoton, from two- to five-photon, upconverted violet fluorescence is first observed on a calix[4]arene-based multi-dipolar assembly which is strongly enhanced as compared to that of the corresponding dipolar counterparts.
View Article and Find Full Text PDFTwo series of quadrupolar diphenylamino-endcapped oligofluorenes, PhN-OF(n)-NPh (n=2-5) and PhN-OF(n)-TAZ-OF(n)-NPh (n=1-4), which have an electron-withdrawing 1,2,4-triazole (TAZ) moiety as central core, with D-π-A-π-D structural motif (D=donor, A=acceptor), have been synthesized by palladium-catalyzed Suzuki cross-coupling of 9,9-dibutyl-7-(diphenylamino)-2-fluorenylboronic acid and the corresponding (1,2,4-triazole-based) aryl halide as key step. On pumping with infrared femtosecond lasers, these oligomers showed very strong multiphoton-excited blue photoluminescence. These D-π-D and D-π-A-π-D quadrupolar oligofluorenes exhibit superior three-photon absorption properties compared to the respective D-π-A counterparts with a highest three-photon absorption cross-section (σ(3)) of up to 2.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2010
Carbon dioxide (CO(2)) is the most important anthropogenic greenhouse gas in the present-day climate. Most of the community focuses on its long-term (decadal to centennial) behaviors that are relevant to climate change, but there are relatively few discussions of its higher-frequency forms of variability, and none regarding its subseasonal distribution. In this work, we report a large-scale intraseasonal variation in the Atmospheric Infrared Sounder CO(2) data in the global tropical region associated with the Madden-Julian oscillation (MJO).
View Article and Find Full Text PDFA series of cyanine fluorophores based on fused aromatics as an electron donor for DNA sensing and two-photon bioimaging were synthesized, among which the carbazole-based biscyanine exhibits high sensitivity and efficiency as a fluorescent light-up probe for dsDNA, which shows selective binding toward the AT-rich regions. The synergetic effect of the bischromophoric skeleton gives a several-fold enhancement in a two-photon absorption cross-section as well as a 25- to 100-fold enhancement in two-photon excited fluorescence upon dsDNA binding.
View Article and Find Full Text PDFA novel series of diphenylamino- and 1,2,4-triazole-end-capped, fluorene-based, pi-conjugated oligomers that includes extended oligofluorenes and oligothienylfluorenes has been synthesized by means of the palladium-catalyzed Suzuki cross-coupling of 9,9-dibutyl-7-(diphenylamino)-2-fluorenylboronic acid and the corresponding 1,2,4,-triazole-based aryl halide as a key step. It was demonstrated that efficient two- and three-photon excited photoluminescence and lasing in the blue region are obtained by pumping near-infrared femtosecond lasers on these materials. Although the absorption and emission maxima of the highly fluorescent and extended oligofluorenes reach a saturation limit, there exists an effective conjugation length for an optimum three-photon absorption cross section in the homologous oligofluorene series.
View Article and Find Full Text PDFThe non-coplanar substituted phenyl rings at the 9-position of a fluorenyl unit can be involved in pi-electron delocalization in which the resulting oligofluorenes exhibit a very large enhancement of two-photon absorption cross sections up to 2559 GM at 710 nm.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2009
Lovelock and Whitfield suggested in 1982 that, as the luminosity of the Sun increases over its life cycle, biologically enhanced silicate weathering is able to reduce the concentration of atmospheric carbon dioxide (CO(2)) so that the Earth's surface temperature is maintained within an inhabitable range. As this process continues, however, between 100 and 900 million years (Ma) from now the CO(2) concentration will reach levels too low for C(3) and C(4) photosynthesis, signaling the end of the solar-powered biosphere. Here, we show that atmospheric pressure is another factor that adjusts the global temperature by broadening infrared absorption lines of greenhouse gases.
View Article and Find Full Text PDF