In myo-control, for computational and setup constraints, the measurement of a high number of muscles is not always possible: the choice of the muscle set to use in a myo-control strategy depends on the desired application scope and a search for a reduced muscle set, tailored to the application, has never been performed. The identification of such set would involve finding the minimum set of muscles whose difference in terms of intention detection performance is not statistically significant when compared to the original set. Also, given the intrinsic sensitivity of muscle synergies to variations of EMG signals matrix, the reduced set should not alter synergies that come from the initial input, since they provide physiological information on motor coordination.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
The current knowledge about muscle synergies does not clearly explain how both rehabilitation and brain plasticity act on the way they evolve after a cortical stroke. In this preliminary study, the authors analyzed the correlation between healthy and affected muscle synergies and the way the latter change after rehabilitation, following the clinical scales scores changes. The aim was finding whether the patients were supposed to get the unimpaired synergies back or develop new synergies due to neural changes.
View Article and Find Full Text PDF