Publications by authors named "Kiner T"

For many years, acetylcholine has been known to contribute to the control of breathing and sleep. To probe further the contributions of cholinergic rostral pontine systems in control of breathing, we designed this study to test the hypothesis that microdialysis (MD) of the muscarinic receptor antagonist atropine into the pontine respiratory group (PRG) would decrease breathing more in animals while awake than while in NREM sleep. In 16 goats, cannulas were bilaterally implanted into rostral pontine tegmental nuclei (n = 3), the lateral (n = 3) or medial (n = 4) parabrachial nuclei, or the Kölliker-Fuse nucleus (KFN; n = 6).

View Article and Find Full Text PDF

To probe further the contributions of the rostral pons to eupneic respiratory rhythm and pattern, we tested the hypothesis that ibotenic acid (IA) injections in the pontine respiratory group (PRG) would disrupt eupneic respiratory rhythm and pattern in a site- and state-specific manner. In 15 goats, cannulas were bilaterally implanted into the rostral pontine tegmental nuclei (RPTN; n = 3), the lateral (LPBN; n = 4) or medial parabrachial nuclei (MPBN; n = 4), or the Kölliker-Fuse nucleus (KFN; n = 4). After recovery from surgery, 1- and 10-microl injections (1 wk apart) of IA were made bilaterally through the implanted cannulas during the day.

View Article and Find Full Text PDF

Abrupt destruction of >70% of the pre-Bötzinger complex (preBötzC) in awake goats results in terminal apnea (Wenninger et al. 2004b). Herein we report data on awake and sleeping goats in which the preBötzC was incrementally destroyed by injection of ibotenic acid (IBO) in increasing volumes at weekly intervals.

View Article and Find Full Text PDF

The objective of the present study was to test the hypothesis that, in the in vivo awake goat model, perturbation/lesion in the pontine respiratory group (PRG) would decrease the sensitivity to hypercapnia and hypoxia. The study reported herein was part of two larger studies in which cholinergic modulation in the PRG was attenuated by microdialysis of atropine and subsequently ibotenic acid injections neurotoxically lesioned the PRG. In 14 goats, cannula were bilaterally implanted into either the lateral (n=4) or medial (n=4) parabrachial nuclei or the Kölliker-Fuse nucleus (KFN, n=6).

View Article and Find Full Text PDF

Opioids are clinically important in the alleviation of pain. An undesirable side effect of opioids is depression of breathing. Data from isolated preparations suggest this effect is due to attenuation of discharge activity of neurons in the pre-Bötzinger complex (preBötzC), a medullary area with respiratory rhythmogenic properties.

View Article and Find Full Text PDF

Abrupt neurotoxic destruction of >70% of the pre-Bötzinger complex (preBötzC) in awake goats results in respiratory and cardiac failure (Wenninger JM, Pan LG, Klum L, Leekley T, Bastastic J, Hodges MR, Feroah TR, Davis S, Forster HV. J Appl Physiol 97: 1629-1636, 2004). However, in reduced preparations, rhythmic respiratory activity has been found in other areas of the brain stem (Huang Q, St.

View Article and Find Full Text PDF

There are widespread chemosensitive areas in the brain with varying effects on breathing. In the awake goat, microdialyzing (MD) 50% CO(2) at multiple sites within the medullary raphe increases pulmonary ventilation (Vi), blood pressure, heart rate, and metabolic rate (Vo(2)) (11), while MD in the rostral and caudal cerebellar fastigial nucleus has a stimulating and depressant effect, respectively, on these variables (17). In the anesthetized cat, the pre-Bötzinger complex (preBötzC), a hypothesized respiratory rhythm generator, increases phrenic nerve activity after an acetazolamide-induced acidosis (31, 32).

View Article and Find Full Text PDF