Publications by authors named "Kindrat I"

Spectroscopic properties of Tb-doped and Tb-Ag codoped lithium tetraborate (LTB) glasses with LiBO (or LiO-2BO) composition are investigated and analysed using electron paramagnetic resonance (EPR), optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectra, PL decay kinetics and absolute quantum yield (QY) measurements. PL spectra of the investigated glasses show numerous narrow emission bands corresponding to the D → F (J = 6-0) and D → F (J = 5-3) transitions of Tb (4f) ions. The most intense PL band of Tb ions at 541 nm (D → F transition) is characterised by a lifetime slightly exceeding 2.

View Article and Find Full Text PDF

The local structure and spectroscopic properties of Cu-Sm co-doped LiBO glass have been studied using XRD, EPR, UV-Vis-NIR absorption and luminescence methods and compared with the corresponding results for Sm-doped and Cu-doped LiBO glasses. The EPR spectrum reveals an axially-symmetric signal with a characteristic hyperfine structure belonging to Cu ions. The Cu/Cu ratio was determined.

View Article and Find Full Text PDF

Aging is a biological process with effects at the molecular, cellular, tissue, organ, system, and organismal levels and is characterized by decline in physical function and higher risks of age-related diseases. The use of anti-aging drugs for disease prevention has become a high priority for science and is a new biomedicine trend. Geroprotectors are compounds which slow aging and increase lifespan of the organism in question.

View Article and Find Full Text PDF

The increasing number of man-made chemicals in the environment that may pose a carcinogenic risk highlights the need for developing reliable time- and cost-effective approaches for carcinogen detection and identification. To address this issue, we investigated the utility of high-throughput microarray gene expression and next-generation genome-wide DNA methylation sequencing for the in vitro identification of genotoxic and non-genotoxic carcinogens. Terminally differentiated and metabolically competent human liver HepaRG cells were treated at minimally cytotoxic concentrations of (i) the genotoxic human liver carcinogen aflatoxin B (AFB1) and its structural non-carcinogenic analog aflatoxin B (AFB2); (ii) the genotoxic human lung carcinogen benzo[a]pyrene (B[a]P) and its non-carcinogenic isomer benzo[e]pyrene (B[e]P); and (iii) the non-genotoxic liver carcinogen methapyrilene for 72 h and transcriptomic and DNA methylation profiles were examined.

View Article and Find Full Text PDF

Inorganic arsenic is a human carcinogen associated with several types of cancers, including liver cancer. Inorganic arsenic has been postulated to target stem cells, causing their oncogenic transformation. This is proposed to be one of the key events in arsenic-associated carcinogenesis; however, the underlying mechanisms for this process remain largely unknown.

View Article and Find Full Text PDF

The substantial rise in the prevalence of nonalcoholic steatohepatitis (NASH), an advanced form of nonalcoholic fatty liver disease, and the strong association between NASH and the development of hepatocellular carcinoma indicate the urgent need for a better understanding of the underlying mechanisms. In the present study, by using the Stelic animal model of NASH and NASH-derived liver carcinogenesis, we investigated the role of the folate-dependent 1-carbon metabolism in the pathogenesis of NASH. We demonstrated that advanced NASH and NASH-related liver carcinogenesis are characterized by a significant dysregulation of 1-carbon homeostasis, with diminished expression of key 1-carbon metabolism genes, especially a marked inhibition of the S-adenosylhomocysteine hydrolase ( Ahcy) gene and an increased level of S-adenosyl-l-homocysteine (SAH).

View Article and Find Full Text PDF

The liver, a central detoxification organ and main regulator of systemic iron homeostasis, is prone to damage by xenobiotics. In the present study, we investigated the effect of the hepatotoxicant and hepatocarcinogen methapyrilene hydrochloride on iron metabolism in rat liver in a repeat-dose in vivo toxicity study and in human HepaRG cells in vitro. Treatment of male Fischer 344 (F344) rats with methapyrilene at doses 40 and 80mg/kg body weight (bw)/day by gavage for 6 weeks resulted in changes in the expression of classic hepatotoxicity-related marker genes and iron homeostasis-related genes, especially a prominent, dose-dependent down-regulation of the transferrin (Tf) gene and an up-regulation of the ferritin, light chain (Ftl) gene.

View Article and Find Full Text PDF

Continuous lifetime exposure to certain natural and man-made chemicals is a major cause of cancers in humans; therefore, evaluating the carcinogenic risks of chemicals remains important. Currently, substantial progress has been made in identification of genotoxic carcinogens; in contrast, predicting the carcinogenic potential of nongenotoxic compounds is a challenge due to many different modes of action that may lead to tumorigenesis. In the present study, we investigated the effects of the nongenotoxic liver carcinogen methapyrilene and the nongenotoxic noncarcinogen usnic acid, at doses that do not exhibit organ cytotoxicity, on epigenomic alterations in the livers and kidneys of Fischer 344 (F344) rats.

View Article and Find Full Text PDF

Over-expression of transferrin receptor 1 (TFRC) is observed in hepatocellular carcinoma (HCC); however, there is a lack of conclusive information regarding the mechanisms of this dysregulation. In the present study, we demonstrated a significant increase in the levels of TFRC mRNA and protein in preneoplastic livers from relevant experimental models of human hepatocarcinogenesis and in human HCC cells. Additionally, using the TCGA database, we demonstrated an over-expression of TFRC in human HCC tissue samples and a markedly decreased level of microRNA-152 (miR-152) when compared to non-tumor liver tissue.

View Article and Find Full Text PDF