Globally, kelp forests are threatened by multiple stressors, including increasing grazing by sea urchins. With coastal upwelling predicted to increase in intensity and duration in the future, understanding whether kelp forest and urchin barren urchins are differentially affected by upwelling-related stressors will give insight into how future conditions may affect the transition between kelp forests and barrens. We assessed how current and future-predicted changes in the duration and magnitude of upwelling-associated stressors (low pH, dissolved oxygen, and temperature) affected the performance of purple sea urchins (Strongylocentrotus purpuratus) sourced from rapidly-declining bull kelp (Nereocystis leutkeana) forests and nearby barrens and maintained on habitat-specific diets.
View Article and Find Full Text PDFKelp forests support some of the most productive and diverse ecosystems on Earth, and their ability to uptake dissolved inorganic carbon (DIC) allows them to modify local seawater chemistry, creating gradients in carbon, pH, and oxygen in their vicinity. By taking up both bicarbonate and CO as a carbon source for photosynthesis, kelp forests can act as carbon sinks, reducing nearby acidity and increasing dissolved oxygen; creating conditions conducive to calcification. Recent stressors, however, have reduced kelp forest canopies globally; converting once large and persistent forests to fragmented landscapes of small kelp patches.
View Article and Find Full Text PDFPredicting the effects of predator diversity loss on food webs is challenging, because predators can both consume and induce behavioral responses in their prey (i.e., non-consumptive effects or NCEs).
View Article and Find Full Text PDF