Publications by authors named "Kina Hoglund"

Introduction: Small molecules and antibodies are being developed to lower amyloid beta (Aβ) peptides.

Methods: We describe MEDI1814, a fully human high-affinity monoclonal antibody selective for Aβ, the pathogenic self-aggregating species of Aβ.

Results: MEDI1814 reduces free Aβ without impacting Aβ in the cerebrospinal fluid of rats and cynomolgus monkeys after systemic administration.

View Article and Find Full Text PDF

Delayed diagnosis and misdiagnosis are frequent in people with amyotrophic lateral sclerosis (ALS), the most common form of motor neuron disease (MND). Neurofilament light chain (NFL) and phosphorylated neurofilament heavy chain (pNFH) are elevated in ALS patients. We retrospectively quantified cerebrospinal fluid (CSF) NFL, CSF pNFH and plasma NFL in stored samples that were collected at the diagnostic work-up of ALS patients (n = 234), ALS mimics (n = 44) and controls (n = 9).

View Article and Find Full Text PDF

Background: Cerebrospinal fluid (CSF) neurogranin and quantitative electroencephalography (qEEG) are potential molecular and functional markers of synaptic pathology in Alzheimer's disease (AD). Synaptic markers have emerged as candidate prognostic indicators of AD since synaptic degeneration was shown to be an early event and the best correlate of cognitive deficits in patients along the disease continuum.

Objective: The present study investigated the association between CSF neurogranin and qEEG measures as well as their potential to predict clinical deterioration in mild cognitive impairment (MCI) patients.

View Article and Find Full Text PDF

Stroke is a major public health problem that can cause a long-term disability or death due to brain damage. Serious stroke is frequently caused by a large vessel occlusion in the anterior circulation, which should be treated by endovascular embolectomy if possible. In this study, we investigated the use of the brain damage biomarkers tau, NFL, NSE, GFAp, and S100B to understand the progression of nervous tissue damage and their relationship to outcome in such stroke after endovascular treatment.

View Article and Find Full Text PDF

Background: Currently, there is no established biomarker for Parkinson's disease (PD) and easily accessible biomarkers are crucial for developing disease-modifying treatments.

Objective: To develop a novel method to quantify cerebrospinal fluid (CSF) levels of α-synuclein protofibrils (α-syn PF) and apply it to clinical cohorts of patients with PD and atypical parkinsonian disorders.

Methods: A cohort composed of 49 patients with PD, 12 with corticobasal degeneration (CBD), 22 with progressive supranuclear palsy, and 33 controls, that visited the memory clinic but had no biomarker signs of Alzheimer's disease (AD, tau<350 pg/mL, amyloid-beta 42 (Aβ42)>530 pg/mL, and phosphorylated tau (p-tau)<60 pg/mL) was used in this study.

View Article and Find Full Text PDF

Background/aim: We aimed to analyze the diagnostic value of total tau (T-tau), S-100 calcium-binding protein B (S100B) and neuron-specific enolase (NSE) as blood-based biomarkers in acute ischemic stroke (AIS) or transient ischemic attack (TIA), and their correlation with symptom severity, infarct size, etiology and outcome.

Patients And Methods: A total of 102 patients with stroke and 35 with TIA were analyzed. Subacute (63.

View Article and Find Full Text PDF

Tau neurofibrillary tangles are key pathological features of Alzheimer's disease and other tauopathies. Recombinant protein technology is vital for studying the structure and function of tau in physiology and aggregation in pathophysiology. However, open-source and well-characterized plasmids for efficiently expressing and purifying different tau variants are lacking.

View Article and Find Full Text PDF

Objective: To assess the ability of a combination of synaptic CSF biomarkers to separate Alzheimer disease (AD) and non-AD disorders and to help in the differential diagnosis between neurocognitive diseases.

Methods: This was a retrospective cross-sectional monocentric study. All participants explored with CSF assessments for neurocognitive decline were invited to participate.

View Article and Find Full Text PDF

Background: CSF and PET biomarkers of amyloid β and tau accurately detect Alzheimer's disease pathology, but the invasiveness, high cost, and poor availability of these detection methods restrict their widespread use as clinical diagnostic tools. CSF tau phosphorylated at threonine 181 (p-tau181) is a highly specific biomarker for Alzheimer's disease pathology. We aimed to assess whether blood p-tau181 could be used as a biomarker for Alzheimer's disease and for prediction of cognitive decline and hippocampal atrophy.

View Article and Find Full Text PDF

Cerebrospinal fluid analyses and neuroimaging can identify the underlying pathophysiology at the earliest stage of some neurodegenerative disorders, but do not have the scalability needed for population screening. Therefore, a blood-based marker for such pathophysiology would have greater utility in a primary care setting and in eligibility screening for clinical trials. Rapid advances in ultra-sensitive assays have enabled the levels of pathological proteins to be measured in blood samples, but research has been predominantly focused on Alzheimer disease (AD).

View Article and Find Full Text PDF

Background: Tau aggregation in neurons and glial cells characterizes tauopathies as Alzheimer's disease (AD), progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). Tau proteolysis has been proposed as a trigger for tau aggregation and tau fragments have been observed in brain and cerebrospinal fluid (CSF). Our group identified a major tau cleavage at amino acid (aa) 224 in CSF; N-terminal tau fragments ending at aa 224 (N-224) were significantly increased in AD and lacked correlation to total tau (t-tau) and phosphorylated tau (p-tau) in PSP and CBD.

View Article and Find Full Text PDF

To date, there is no validated fluid biomarker for tau pathology in Alzheimer's disease, with contradictory results from studies evaluating the correlation between phosphorylated tau in CSF with tau PET imaging. Tau protein is subjected to proteolytic processing into fragments before being secreted to the CSF. A recent study suggested that tau cleavage after amino acid 368 by asparagine endopeptidase (AEP) is upregulated in Alzheimer's disease.

View Article and Find Full Text PDF

Synapse impairment is thought to be an early event in Alzheimer's disease (AD); dysfunction and loss of synapses are linked to cognitive symptoms that precede neuronal loss and neurodegeneration. Neurogranin (Ng) is a somatodendritic protein that has been shown to be reduced in brain tissue but increased in the cerebrospinal fluid (CSF) of AD patients compared to age-matched controls. High levels of CSF Ng have been shown to reflect a more rapid AD progression.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to assess the incidence of acute symptomatic seizures and poststroke epilepsy (PSE) in a well-characterized cohort of patients treated with mechanical thrombectomy. In addition, we aimed to describe the dynamics of blood markers of brain injury in patients that developed PSE.

Methods: Participants of the prospective AnStroke Trial of anesthesia method during mechanical thrombectomy were included and acute symptomatic seizures and PSE ascertained by medical records review.

View Article and Find Full Text PDF

Background Phosphorylated neurofilament heavy (pNfH), a neuronal cytoskeleton protein, might provide a promising blood biomarker of neuronal damage in neurodegenerative diseases (NDDs). The best analytical approaches to measure pNfH levels and whether serum levels correlate with cerebrospinal fluid (CSF) levels in NDDs remain to be determined. Methods We here compared analytical sensitivity and reliability of three novel analytical approaches (homebrew Simoa, commercial Simoa and ELISA) for quantifying pNfH in both CSF and serum in samples of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD) and control subjects.

View Article and Find Full Text PDF

Background And Purpose: We studied serum neurofilaments diagnostic value in patients with acute ischemic stroke (AIS) or TIA and evaluated any correlation with symptom severity, cerebral infarction volume, aetiology, and clinical outcome.

Methods: One hundred and thirty-six patients (101 with AIS, and 35 with TIA) were included. Acute-phase serum neurofilament light chain (sNfL) was analyzed with a novel ultrasensitive single molecule array (Simoa).

View Article and Find Full Text PDF

Background: Frontotemporal dementia (FTD) is a pathologically heterogeneous neurodegenerative disorder associated usually with tau or TDP-43 pathology, although some phenotypes such as logopenic variant primary progressive aphasia are more commonly associated with Alzheimer's disease pathology. Currently, there are no biomarkers able to diagnose the underlying pathology during life. In this study, we aimed to investigate the potential of novel tau species within cerebrospinal fluid (CSF) as biomarkers for tau pathology in FTD.

View Article and Find Full Text PDF

A possible involvement of the gene IL1RAP (interleukin-1 receptor-associated protein) in the pathogenesis of Alzheimer's disease (AD) has been suggested in GWASs of cerebrospinal fluid (CSF) tau levels and longitudinal change in brain amyloid burden. The aim of this study was to examine previously implicated genetic markers in and near IL1RAP in relation to AD risk, CSF tau and Aβ biomarkers, as well as cognitive decline, in a case (AD)-control study and an age homogenous population-based cohort. Genotyping of IL1RAP-related single nucleotide polymorphisms (SNPs), selected based on previous GWAS results, was performed.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is pathologically characterized by the accumulation of amyloid-β (Aβ) plaques, neurofibrillary tangles and widespread neuronal loss in the brain. In recent years, blood biomarkers have emerged as a realistic prospect to highlight accumulating pathology for secondary prevention trials. Neurofilament light chain (NfL), a marker of axonal degeneration, is robustly elevated in the blood of many neurological and neurodegenerative conditions, including AD.

View Article and Find Full Text PDF

Purpose: Studies comparing CSF and PET tau biomarkers have included only commercial CSF assays examining specific phosphorylation sites (e.g. threonine 181, P-tau) and mid-domain tau (i.

View Article and Find Full Text PDF

Background: Neurofilament light (NFL) is a well-validated biomarker for neuronal injury and neurodegeneration. Increased cerebrospinal fluid (CSF) levels have been shown after stroke, as well as in patients with a broad range of neurodegenerative and neuroinflammatory diseases. Neurofilament heavy (NFH) belongs to the same family of structural proteins but it is less extensively studied.

View Article and Find Full Text PDF

Tau is an axonal microtubule-binding protein. Tau pathology in brain and increased tau concentration in the cerebrospinal fluid (CSF) are hallmarks of Alzheimer's disease (AD). Most of tau in CSF is present as fragments.

View Article and Find Full Text PDF

Importance: Neuronal and axonal destruction are hallmarks of neurodegenerative diseases, but it is difficult to estimate the extent and progress of the damage in the disease process.

Objective: To investigate cerebrospinal fluid (CSF) levels of neurofilament light (NFL) protein, a marker of neuroaxonal degeneration, in control participants and patients with dementia, motor neuron disease, and parkinsonian disorders (determined by clinical criteria and autopsy), and determine its association with longitudinal cognitive decline.

Design, Setting, And Participants: In this case-control study, we investigated NFL levels in CSF obtained from controls and patients with several neurodegenerative diseases.

View Article and Find Full Text PDF

Synaptic function and neurotransmitter release are regulated by specific proteins. Cortical neuronal differentiation of human induced pluripotent stem cells (hiPSC) provides an experimental model to obtain more information about synaptic development and physiology in vitro. In this study, expression and secretion of the synaptic proteins, neurogranin (NRGN), growth-associated protein-43 (GAP-43), synaptosomal-associated protein-25 (SNAP-25) and synaptotagmin-1 (SYT-1) were analyzed during cortical neuronal differentiation.

View Article and Find Full Text PDF