Publications by authors named "Kin-Leong Pey"

Localized electrical breakdown (BD) measurements are performed on 2D muscovite mica flakes of ~ 2 to 15 nm thickness using Conduction Atomic Force Microscopy (CAFM). To obtain robust BD data by CAFM, the probed locations are spaced sufficiently far apart (> 1 µm) to avoid mutual interference and the maximum current is set to a low value (< 1 nA) to ensure severe damage does not occur to the sample. The analyses reveals that 2D muscovite mica has high electrical breakdown strength (12 MV/cm or more) and low leakage current, comparable to 2D hexagonal boron nitride (h-BN) of similar thickness.

View Article and Find Full Text PDF

A new silicon-controlled rectifier embedded diode (SCR-D) for 7 nm bulk FinFET process electrostatic discharge (ESD) protection applications is proposed. The transmission line pulse (TLP) results show that the proposed device has a low turn-on voltage of 1.77 V.

View Article and Find Full Text PDF

Resistive switching (RS) devices are emerging electronic components that could have applications in multiple types of integrated circuits, including electronic memories, true random number generators, radiofrequency switches, neuromorphic vision sensors, and artificial neural networks. The main factor hindering the massive employment of RS devices in commercial circuits is related to variability and reliability issues, which are usually evaluated through switching endurance tests. However, we note that most studies that claimed high endurances >10 cycles were based on resistance cycle plots that contain very few data points (in many cases even <20), and which are collected in only one device.

View Article and Find Full Text PDF

Hexagonal boron nitride (h-BN) has emerged as a promising 2D/layered dielectric owing to its successful integration with graphene and other 2D materials, although a coherent picture of the overall dielectric breakdown mechanism in h-BN is yet to emerge. Here, we have carried out a systematic study using conduction atomic force microscopy to provide insights into the process of defect generation and dielectric degradation in the progressive breakdown (PBD) and hard breakdown (HBD) stages in 2-5 nm thick chemical vapor deposition (CVD)-grown multilayer h-BN films. The PBD and HBD regimes show different behaviors.

View Article and Find Full Text PDF

Development of technologies for water desalination and purification is critical to meet the global challenges of insufficient water supply and inadequate sanitation, especially for point-of-use applications. Conventional desalination methods are energy and operationally intensive, whereas adsorption-based techniques are simple and easy to use for point-of-use water purification, yet their capacity to remove salts is limited. Here we report that plasma-modified ultralong carbon nanotubes exhibit ultrahigh specific adsorption capacity for salt (exceeding 400% by weight) that is two orders of magnitude higher than that found in the current state-of-the-art activated carbon-based water treatment systems.

View Article and Find Full Text PDF

We apply our understanding of the physics of failure in the post-breakdown regime of high-κ dielectric-based conventional logic transistors having a metal-insulator-semiconductor (MIS) structure to interpret the mechanism of resistive switching in resistive random-access memory (RRAM) technology metal-insulator-metal (MIM) stacks. Oxygen vacancies, gate metal migration and metal filament formation in the gate dielectric which constitute the chemistry of breakdown in the post-breakdown stage of logic gate stacks are attributed to be the mechanisms responsible for the SET process in RRAM technology. In this paper, we draw an analogy between the breakdown study in logic devices and filamentation physics in resistive non-volatile memory.

View Article and Find Full Text PDF