Publications by authors named "Kin-Fai Chan"

Polymyxins, including colistin and polymyxin B, serve as crucial last-resort antibiotics for managing infections caused by carbapenem-resistant Enterobacterales (CRE). However, the rapid spread of the mobilized colistin resistance gene (mcr-1) challenged the efficacy of treatment by polymyxins. The mcr-1 gene encoded a transmembrane phosphoethanolamine (PEA) transferase enzyme, MCR-1.

View Article and Find Full Text PDF

The emergence of plasmid-encoded colistin resistance mechanisms, MCR-1, a phosphoethanolamine transferase, rendered colistin ineffective as last resort antibiotic against severe infections caused by clinical Gram-negative bacterial pathogens. Through screening FDA-approved drug library, we identified two structurally similar compounds, namely cetylpyridinium chloride (CET) and domiphen bromide (DOM), which potentiated colistin activity in both colistin-resistant and susceptible Enterobacterales. These compounds were found to insert their long carbon chain to a hydrophobic pocket of bacterial phosphoethanolamine transferases including MCR-1, competitively blocking the binding of lipid A tail for substrate recognition and modification, resulting in the increase of bacterial sensitivity to colistin.

View Article and Find Full Text PDF

Carbapenem-resistant Enterobacterales (CRE) has emerged as a worldwide spread nosocomial superbug exhibiting antimicrobial resistance (AMR) to all current antibiotics, leaving limited options for treating its infection. To discovery novel antibiotics against CRE, we designed and synthesized a series of 14 isothiazol-3(2H)-one analogues subjected to antibacterial activity evaluation against Escherichia coli (E. coli) BL21 (NDM-1) and clinical strain E.

View Article and Find Full Text PDF

The co-existence of various pathogenic bacteria on the surface of pork products exacerbates difficulties in food safety control. Developing broad-spectrum and stable antibacterial agents that are not antibiotics is an unmet need. To address this issue, all l-arginine residues of a reported peptide (IIRR)-NH (zp80) were substituted with the corresponding D enantiomers.

View Article and Find Full Text PDF

In this work, by capping a macrolactam ring at the C-terminus of a de novo-designed peptide, namely zp80, we have constructed a small peptide library via the solid phase peptide synthesis for screening. Eight peptides bearing different aspartic acid-rich macrolactam rings but the same linear (IIRR) unit exhibited improved antibacterial activities, hemolytic activity, and selectivity index. Mechanistic studies revealed that they could destroy the integrity of bacterial envelope, leading to cytoplasm leakage and rapid dissipation of membrane potential.

View Article and Find Full Text PDF

We synthesize various substituted triazole-containing flavonoids and identify potent, nontoxic, and highly selective BCRP inhibitors. , , and possess -methoxycarbonylbenzyloxy substitution at C-3 of the flavone moiety and substituted triazole at C-4' of the B-ring. They show low toxicity (IC toward L929 > 100 μM), potent BCRP-inhibitory activity (EC = 1-15 nM), and high BCRP selectivity (BCRP selectivity over MRP1 and P-gp > 67-714).

View Article and Find Full Text PDF

Food-borne pathogenic bacteria are dispersed throughout the entire chain of the food industry. However, many food preservatives are limited by poor biocompatibility such as cumulative poisoning. The antimicrobial peptide is increasingly regarded as a promising preservative in food research due to its high bioactivity and low cytotoxicity.

View Article and Find Full Text PDF

Biofilm-producing pathogens, such as Acinetobacter baumannii, have aroused escalating attention. Because these bacteria could secrete mixture with close-knit architecture and complicated components to resist traditional antibiotics. Here, we reported an amphiphilic peptide denoted as zp3 (GIIAGIIIKIKK-NH), which showed favorable bioactivity against Acinetobacter baumannii ATCC 19606 (minimal inhibitory concentration, MIC = 4 μM) and low cytotoxicity to mammalian cells Vero (half maximal inhibitory concentration, IC > 100 μM).

View Article and Find Full Text PDF

Carbapenem-resistant Enterobacteriaceae (CRE) producing New Delhi metallo-β-lactamase (NDM-1) cause untreatable bacterial infections, posing a significant threat to human health. In the present study, by employing the concept of bioisosteric replacement of the selenium moiety of ebselen, we have designed, synthesized and characterized a small compound library of 2-substituted 1,2-benzisothiazol-3(2H)-one derivatives and related compounds for evaluating their cytotoxicity and synergistic activity in combination with meropenem against the E. coli Tg1 (NDM-1) strain.

View Article and Find Full Text PDF

Given the worldwide prevalence of pathogenic drug-resistant bacteria and the slow pace of new antibacterial development, discovering new uses for approved drugs that are outside the scope of the original indication is increasingly becoming an attractive proposition. In this work, seven linear cationic hexadecapeptides were designed, synthesized, and characterized. These amphiphilic peptides are able to transform from the random coil structure in water to α-helix in SDS solution and have only modest bioactivity to limited bacterial strains when used alone.

View Article and Find Full Text PDF

Moenomycin A, the well-known natural product inhibitor of peptidoglycan glycosyltransferase (PGT), is a large amphiphilic molecule of molecular mass of 1583 g/mol and its bioavailablity as a drug is relatively poor. In searching for small-molecule ligands with high inhibition ability targeting the enzyme, we found that the addition of hydrophobic groups to an isatin-based inhibitor of bacterial PGT significantly improves its inhibition against the enzyme, as well as its antibacterial activity. The improvement in enzymatic inhibition can be attributed to a better binding of the small molecule inhibitor to the hydrophobic region of the membrane-bound bacterial cell wall synthesis enzyme and the plasma membrane.

View Article and Find Full Text PDF

The present work describes the syntheses of diverse triazole bridged flavonoid dimers and identifies potent, nontoxic, and highly selective BCRP inhibitors. A homodimer, , with -methoxycarbonylbenzyloxy substitution at C-3 of the flavone moieties and a triazole-containing linker (21 atoms between the two flavones) showed low toxicity (IC toward L929, 3T3, and HFF-1 > 100 μM), potent BCRP-inhibitory activity (EC = 1-2 nM), and high BCRP selectivity (BCRP selectivity over MRP1 and P-gp > 455-909). inhibits BCRP-ATPase activity, blocks the drug efflux activity of BCRP, elevates the intracellular drug accumulation, and finally restores the drug sensitivity of BCRP-overexpressing cells.

View Article and Find Full Text PDF

Phenol-soluble modulins (PSMs) are a large family of cytolytic peptide toxins produced by Staphylococcus aureus. Based on their amino acid sequences, we have constructed a small library of cationic isoleucine-rich peptides for antimicrobial evaluation. Relative to the parent PSMs, peptide zp3 (GIIAGIIIKIKK-NH ) was found to possess greatly improved physicochemical properties (soluble in water) and antibacterial activity (MIC=8 μm for E.

View Article and Find Full Text PDF

The issue of multidrug resistant bacteria is a worldwide health threat. To develop new antibacterial agents with new mechanisms of action is thus an urgent request to address this antibiotic resistance crisis. In the present study, a new thiophenyl-pyrimidine derivative was prepared and utilized as an effective antibacterial agent against Gram-positive strains.

View Article and Find Full Text PDF

The rapid emergence of methicillin-resistant Staphylococcus aureus (MRSA) strains has undermined the therapeutic efficacy of existing β-lactam antibiotics (BLAs), prompting an urgent need to discover novel BLAs adjuvants that can potentiate their anti-MRSA activities. In this study, cytotoxicity and antibacterial screening of a focused compound library enabled us to identify a compound, namely 28, which exhibited low cytotoxicity against normal cells and robust in vitro bactericidal synergy with different classes of BLAs against a panel of multidrug-resistant clinical MRSA isolates. A series of biochemical assays and microscopic studies have revealed that compound 28 is likely to interact with the S.

View Article and Find Full Text PDF

A 300-member flavonoid dimer library of multidrug resistance-associated protein 1 (MRP1, ABCC1) modulators was rapidly assembled using "click chemistry". Subsequent high-throughput screening has led to the discovery of highly potent (EC ranging from 53 to 298 nM) and safe (selective indexes ranging from >190 to >1887) MRP1 modulators. Some dimers have potency about 6.

View Article and Find Full Text PDF

The increasing incidences of multidrug resistant bacterial infections urge the development of novel antibacterial having a new mechanism of action. The small molecule-based inhibitors targeting at the cell division protein FtsZ has been recognized as a promising approach to search for new antibacterial with high potency. In the present study, a series of novel 2,4-disubstituted-6-thiophenyl-pyrimidine derivatives were synthesized and their antibacterial activities against clinically related pathogens were investigated.

View Article and Find Full Text PDF

We have recently identified a new class of filamenting temperature-sensitive mutant Z (FtsZ)-interacting compounds that possess a 2,4,6-trisubstituted pyrimidine-quinuclidine scaffold with moderate antibacterial activity. Employing this scaffold as a molecular template, a compound library of amine-linked 2,4,6-trisubstituted pyrimidines with 99 candidates was successfully established by employing an efficient convergent synthesis designed to explore their structure-activity relationship. The results of minimum inhibitory concentration (MIC) assay against strains and cytotoxicity assay against the mouse L929 cell line identified those compounds with potent antistaphylococcal properties (MIC ranges from 3 to 8 μg/mL) and some extent of cytotoxicity against normal cells (IC ranges from 6 to 27 μM).

View Article and Find Full Text PDF

The worldwide prevalence of NDM-1-producing bacteria has drastically undermined the clinical efficacy of the last line antibiotic of carbapenems, prompting a need to devise effective strategy to preserve their clinical value. Our previous studies have shown that ebselen can restore the efficacy of meropenem against a laboratory strain that produces NDM-1. Here we report the construction of a focused compound library of 1,2-benzisoselenazol-3(2H)-one derivatives which comprise a total of forty-six candidate compounds.

View Article and Find Full Text PDF

Bacterial β-lactamases readily inactivate most penicillins and cephalosporins by hydrolyzing and "opening" their signature β-lactam ring. In contrast, carbapenems resist hydrolysis by many serine-based class A, C, and D β-lactamases due to their unique stereochemical features. To improve the resistance profile of penicillins, we synthesized a modified penicillin molecule, MPC-1, by "grafting" carbapenem-like stereochemistry onto the penicillin core.

View Article and Find Full Text PDF

MRP1 overexpression in multidrug-resistant cancer cells has been shown to be responsible for collateral sensitivity to some flavonoids that stimulate a huge MRP1-mediated GSH efflux. This massive GSH depletion triggers the death of these cancer cells. We describe here that bivalent flavonoid dimers strikingly stimulate such MRP1-mediated GSH efflux and trigger a 50-100 fold more potent cell death than their corresponding monomers.

View Article and Find Full Text PDF

Flavonoid dimer FD18 is a new class of dimeric P-gp modulator that can reverse cancer drug resistance. FD18 is a potent (EC50 = 148 nM for paclitaxel), safe (selective index = 574), and selective P-glycoprotein (P-gp) modulator. FD18 can modulate multidrug resistance toward paclitaxel, vinblastine, vincristine, doxorubicin, daunorubicin, and mitoxantrone in human breast cancer LCC6MDR in vitro.

View Article and Find Full Text PDF

We report the discovery of a promising NDM-1 inhibitor, ebselen, through a cell-based screening approach. Enzymatic kinetic study and ESI-MS analysis suggested that ebselen could bind to NDM-1 by forming a S-Se bond with the Cys(221) residue at the active site, thereby exhibiting a new inhibition mechanism with broad spectrum inhibitory potential.

View Article and Find Full Text PDF

Peptidoglycan glycosyltransferase (PGT) has been shown to be an important pharmacological target for the inhibition of bacterial cell wall biosynthesis. Structure-based virtual screening of about 3,000,000 commercially available compounds against the crystal structure of the glycosyltransferase (GT) domain of the Staphylococcus aureus penicillin-binding protein 2 (S. aureus PBP2) resulted in identification of an isatin derivative, 2-(3-(2-carbamimidoylhydrazono)-2-oxoindolin-1-yl)-N-(m-tolyl)acetamide (4) as a novel potential GT inhibitor.

View Article and Find Full Text PDF

Inhibition of the functional activity of Filamenting temperature-sensitive mutant Z (FtsZ) protein, an essential and highly conserved bacterial cytokinesis protein, is a promising approach for the development of a new class of antibacterial agents. Berberine, a benzylisoquinoline alkaloid widely used in traditional Chinese and native American medicines for its antimicrobial properties, has been recently reported to inhibit FtsZ. Using a combination of in silico structure-based design and in vitro biological assays, 9-phenoxyalkyl berberine derivatives were identified as potent FtsZ inhibitors.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionti1bgfcg40ablt8r955fcehbp94oebge): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once