Publications by authors named "Kin S Lam"

The salinosporamides are potent proteasome inhibitors among which the parent marine-derived natural product salinosporamide A (marizomib; NPI-0052; 1) is currently in clinical trials for the treatment of various cancers. Methods to generate this class of compounds include fermentation and natural products chemistry, precursor-directed biosynthesis, mutasynthesis, semi-synthesis, and total synthesis. The end products range from biochemical tools for probing mechanism of action to clinical trials materials; in turn, the considerable efforts to produce the target molecules have expanded the technologies used to generate them.

View Article and Find Full Text PDF

Large-scale fermentation of the marine actinomycete Salinispora tropica for production of salinosporamide A (NPI-0052; 1) clinical trials materials provided crude extracts containing minor secondary metabolites, including salinosporamide B (2) and a new congener, 3. Spectroscopic characterization revealed that 3 is identical to antiprotealide, a molecular hybrid of 20S proteasome inhibitors 1 and omuralide (4) not previously described as a natural product. Analysis of crude extracts from shake flask cultures of three wild-type S.

View Article and Find Full Text PDF

The discovery of the anticancer agent salinosporamide A (NPI-0052) resulted from the exploration of new marine environments and a commitment to the potential of the ocean to yield new natural products for drug discovery and development. Driving the success of this process was the linkage of academic research together with the ability and commitment of industry to undertake drug development and provide the resources and expertise to advance the entry of salinosporamide A (NPI-0052) into human clinical trials. This paper offers a chronicle of the important events that facilitated the rapid clinical development of this exciting molecule.

View Article and Find Full Text PDF

A series of chlorinated bisindole pyrroles, lynamicins A-E (1-5), was discovered from a novel marine actinomycete, NPS12745, which was isolated from a marine sediment collected off the coast of San Diego, California. Close to full length 16S rRNA sequence analysis indicated that NPS12745 is a novel strain of a recently described marine actinomycete with the proposed genus name Marinispora. The antimicrobial spectrum of these compounds was evaluated against a panel of 11 pathogens, which demonstrated that these substances possess broad-spectrum activity against both Gram-positive and Gram-negative organisms.

View Article and Find Full Text PDF

We recently described the development of a potassium-chloride-based salt formulation containing low sodium concentration (5.0 mM) to support the growth of Salinispora tropica strain NPS21184 and its production of salinosporamide A (NPI-0052). In order to determine whether the above low-sodium salt formulation can also support the growth of other S.

View Article and Find Full Text PDF

In order to improve aqueous solubility of nocathiacin I (1), a potent antibacterial agent, N-demethylation of the amino-sugar moiety was sought. Irradiation of 1 in DMF/CH(2)Cl(2) with UV light of 380 nm led to a cyclic product 2, which was hydrolyzed to yield the desired nocathiacin VI (3). Treatment of 1 with shorter UV light caused trans-cis isomerization of a c-c double bond.

View Article and Find Full Text PDF

A novel marine actinomycete strain NPS8920 produces a new class of 4-oxazolidinone antibiotics lipoxazolidinone A, B and C. Lipoxazolidinone A possesses good potency (1-2 microg/mL) against drug-resistant pathogens methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). Strain NPS8920 exhibits different morphologies in both agar and submerged cultures.

View Article and Find Full Text PDF

In this paper, we described the development of a potassium-chloride-based-salt formulation containing low sodium concentrations (5.0 to 11 mM) to support the growth of Salinispora tropica strain NPS21184 and its production of salinosporamide A (NPI-0052). The sodium present in the media was essentially derived from the complex nitrogen sources Hy Soy, yeast extract, and peptone used in the media.

View Article and Find Full Text PDF

Salinosporamide A (NPI-0052) is currently produced by a marine actinomycete, Salinispora tropica, via a saline fermentation process using a non-defined, commercially available synthetic sea salt, Instant Ocean. In order to control the consistency of the production of NPI-0052 and related analogs, two chemically defined salt formulations were developed to replace Instant Ocean. A chemically defined sodium-chloride-based salt formulation with similar sodium and chloride contents as in Instant Ocean was found to support higher production of NPI-0052 and a better metabolite production profile for downstream processing than Instant Ocean.

View Article and Find Full Text PDF

Marine actinomycete strain NPS008920, a member of the new genus Marinispora, was isolated from a sediment sample collected in Cocos Lagoon, Guam. In natural sea water containing media, the strain produced a series of novel 2-alkylidene-5-alkyl-4-oxazolidinones, lipoxazolidinone A (1), B (2), and C (3). Compounds 1- 3 showed broad spectrum antimicrobial activity similar to that of the commercial antibiotic linezolid (Zyvox), a 2-oxazolidinone.

View Article and Find Full Text PDF

Addition of acrylic resin Amberlite XAD-7 during the fermentation of Salinispora tropica significantly enhanced the production of NPI-0052 by 69 fold. Examination of the time course of resin addition to the Salinispora tropica fermentation demonstrated that the increase in the production of NPI-052 is due to the stabilization effect by resin but not the removal of an end product feedback repression. Delay in resin addition to the fermentation led to decreases in the production of NPI-0052 to the amounts that are synthesized prior to the resin addition.

View Article and Find Full Text PDF

During the past 15 years, most large pharmaceutical companies have decreased the screening of natural products for drug discovery in favor of synthetic compound libraries. Main reasons for this include the incompatibility of natural product libraries with high-throughput screening and the marginal improvement in core technologies for natural product screening in the late 1980s and early 1990 s. Recently, the development of new technologies has revolutionized the screening of natural products.

View Article and Find Full Text PDF

We examined the effects of halogens on the production of salinosporamide A (NPI-0052) by the obligate marine actinomycete Salinispora tropica NPS465, specifically the production of analogs containing halogens other than chlorine. Adding NaF, NaBr and NaI directly to the production medium prepared in seawater containing -3% NaCl did not induce the production of the corresponding analogs. Replacing seawater with 2-3% NaI in the production medium enhanced the production of NPI-0052 by 2.

View Article and Find Full Text PDF

Feeding sodium butyrate (0.25-1 mg/ml) to cultures of Salinispora tropica NPS21184 enhanced the production of salinosporamide B (NPI-0047) by 319% while inhibiting the production of salinosporamide A (NPI-0052) by 26%. Liquid chromatography mass spectrometry analysis of the crude extract from the strain NPS21184 fed with 0.

View Article and Find Full Text PDF

Salinosporamide A (NPI-0052; 3), a highly potent inhibitor of the 20S proteasome, is currently in phase I clinical trials for the treatment of cancer. During the course of purifying multigram quantities of 3 from Salinispora tropica fermentation extracts, several new salinosporamides were isolated and characterized, most of which represent modifications to the chloroethyl substituent at C-2. Specifically, 3 was isolated along with the known compound salinosporamide B (4), the previously undescribed methyl congener salinosporamide D (7), and C-2 epimers of 3 and 7 (salinosporamides F (9) and G (10), respectively).

View Article and Find Full Text PDF

Recent findings from culture-dependent and culture-independent methods have demonstrated that indigenous marine actinomycetes exist in the oceans and are widely distributed in different marine ecosystems. There is tremendous diversity and novelty among the marine actinomycetes present in marine environments. Progress has been made to isolate novel actinomycetes from samples collected at different marine environments and habitats.

View Article and Find Full Text PDF

Stereoselective reduction of dehydroalanine double bond in nocathiacin I afforded the primary amide 2. Enzymatic hydrolysis of the amide 2 provided the carboxylic acid 3, which upon coupling with a variety of amines furnished amides 4-32. Some of these semi-synthetic derivatives have retained very good antibacterial activity and have improved aqueous solubility.

View Article and Find Full Text PDF

Natural product compounds are the source of numerous therapeutic agents. Recent progress to discover drugs from natural product sources has resulted in compounds that are being developed to treat cancer, resistant bacteria and viruses and immunosuppressive disorders. Many of these compounds were discovered by applying recent advances in understanding the genetics of secondary metabolism in actinomycetes, exploring the marine environment and applying new screening technologies.

View Article and Find Full Text PDF

The solid-phase synthesis of a library based on the natural product anisomycin is described. The resulting library was tested against a panel of bacterial and fungal targets, and active compounds were identified in a Staphylococcus aureus whole-cell assay and an efflux-deficient fungal whole-cell assay.

View Article and Find Full Text PDF

A Streptomyces sp. (NPS008187) isolated from a marine sediment collected in Alaska was found to produce three new pyrrolosesquiterpenes, glyciapyrroles A (1), B (2), and C (3), along with the known diketopiperazines cyclo(leucyl-prolyl) (4), cyclo(isoleucyl-prolyl) (5), and cyclo(phenylalanyl-prolyl) (6). The structures of 1, 2, and 3 were established using spectroscopic methods.

View Article and Find Full Text PDF

Salinosporamide A (1, NPI-0052) is a potent proteasome inhibitor in development for treating cancer. In this study, a series of analogues was assayed for cytotoxicity, proteasome inhibition, and inhibition of NF-kappaB activation. Marked reductions in potency in cell-based assays accompanied replacement of the chloroethyl group with unhalogenated substituents.

View Article and Find Full Text PDF

The conversion of alpha-phenylalanine to beta-phenylalanine is the first committed step in the biosynthesis of the C-13 side chain of Taxol. Thus, the novel enzyme responsible for this step, phenylalanine aminomutase (PAM), is of considerable interest for studies of Taxol biosynthesis and represents a potential target for genetic engineering. A method is described for purifying PAM from Taxus chinensis cell cultures.

View Article and Find Full Text PDF

A strain of Streptomyces nodosus (NPS007994) isolated from a marine sediment collected in Scripps Canyon, La Jolla, California, was found to produce lajollamycin (1), a nitro-tetraene spiro-beta-lactone-gamma-lactam antibiotic. The structure was established by complete analysis of spectroscopic data and comparison with known antibiotics oxazolomycin (2), 16-methyloxazolomycin (3), and triedimycin B (4). Lajollamycin (1) showed antimicrobial activity against both drug-sensitive and -resistant Gram-positive bacteria and inhibited the growth of B16-F10 tumor cells in vitro.

View Article and Find Full Text PDF

Several nocathiacin I analogues (4-35) were synthesized and evaluated for their antibacterial activity. Most of these semi-synthetic analogues retained very good in vitro and in vivo antibacterial activity of 1.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiongj21vn0gnh9769jiq47unh89h7t1fmg3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once