Aims: The open-loop nature of conventional deep brain stimulation (DBS) produces continuous and excessive stimulation to patients which contributes largely to increased prevalence of adverse side effects. Cerebellar ataxia is characterized by abnormal Purkinje cells (PCs) dendritic arborization, loss of PCs and motor coordination, and muscle weakness with no effective treatment. We aim to develop a real-time field-programmable gate array (FPGA) prototype targeting the deep cerebellar nuclei (DCN) to close the loop for ataxia using conditional double knockout mice with deletion of PC-specific LIM homeobox (Lhx)1 and Lhx5, resulting in abnormal dendritic arborization and motor deficits.
View Article and Find Full Text PDFChronic binge-like drinking is a risk factor for age-related dementia, however, the lasting and irreversible effect of alcohol on the brain remains elusive. Transcriptomic changes in brain cortices revealed pro-ageing hallmarks upon chronic ethanol exposure and these changes predominantly occur in neurons. The changes are attributed to a prioritized ethyl alcohol oxidation in these cells via the NADPH-dependent cytochrome pathway.
View Article and Find Full Text PDFPeripheral nerve injury (PNI) often results in spontaneous motor recovery; however, how disrupted cerebellar circuitry affects PNI-associated motor recovery is unknown. Here, we demonstrated disrupted cerebellar circuitry and poor motor recovery in ataxia mice after PNI. This effect was mimicked by deep cerebellar nuclei (DCN) lesion, but not by damaging non-motor area hippocampus.
View Article and Find Full Text PDFCerebellum is one of the major targets of autoimmunity and cerebellar damage that leads to ataxia characterized by the loss of fine motor coordination and balance, with no treatment available. Deep brain stimulation (DBS) could be a promising treatment for ataxia but has not been extensively investigated. Here, our study aims to investigate the use of interposed nucleus of deep cerebellar nuclei (IN-DCN) for ataxia.
View Article and Find Full Text PDFAutism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by social communication deficit and repetitive behaviour. In the past few years, increasing clinical evidence has shown that the cerebellum may contribute to the neuropathology of ASD. However, studies in the mechanism for the involvement of the cerebellum in autism remained speculative.
View Article and Find Full Text PDFEarly changes in astrocyte energy metabolism are associated with late-onset Alzheimer's disease (LOAD), but the underlying mechanism remains elusive. A previous study suggested an association between a synonymous SNP (rs1012672, C→T) in LRP6 gene and LOAD; and that is indeed correlated with diminished LRP6 gene expression in the frontal cortex region. The authors show that LRP6 is a unique Wnt coreceptor on astrocytes, serving as a bimodal switch that modulates their metabolic landscapes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2021
DNA damage plays a central role in the cellular pathogenesis of polyglutamine (polyQ) diseases, including Huntington's disease (HD). In this study, we showed that the expression of untranslatable expanded CAG RNA per se induced the cellular DNA damage response pathway. By means of RNA sequencing (RNA-seq), we found that expression of the () gene was down-regulated in mutant CAG RNA-expressing cells.
View Article and Find Full Text PDFThe choroid plexus (CP) is an extensively vascularized neuroepithelial tissue that projects into the brain ventricles. The restriction of transepithelial transport across the CP establishes the blood-cerebrospinal fluid (CSF) barrier that is fundamental to the homeostatic regulation of the central nervous system microenvironment. However, the molecular mechanisms that control this process remain elusive.
View Article and Find Full Text PDFThe highly conserved and ubiquitously expressed transcription factor Yin Yang 1 (Yy1), was named after its dual functions of both activating and repressing gene transcription. Yy1 plays complex roles in various fundamental biological processes such as the cell cycle progression, cell proliferation, survival, and differentiation. Patients with dominant Yy1 mutations suffer from central nervous system (CNS) developmental defects.
View Article and Find Full Text PDFNeural progenitors undergo temporal fate transition to generate diversified neurons in stereotyped sequence during development. However, the molecular machineries driving progenitor fate change remain unclear. Here, using the cerebellum as a platform, we demonstrate that the temporal dynamics of a dorsoventral bone morphogenetic protein (BMP)/SMAD signaling gradient orchestrates the transition from early to late phase of neurogenesis.
View Article and Find Full Text PDFPolyglutamine diseases are a set of progressive neurodegenerative disorders caused by misfolding and aggregation of mutant CAG RNA and polyglutamin protein. To date, there is a lack of effective therapeutics that can counteract the polyglutamine neurotoxicity. Two peptidylic inhibitors, QBP1 and P3, targeting the protein and RNA toxicities, respectively, have been previously demonstrated by us with combinational therapeutic effects on the Drosophila polyglutamine disease model.
View Article and Find Full Text PDFDB213 is an expanded CAG RNA inhibitor targeting polyglutamine diseases. This current study aims to investigate biopharmaceutic characteristics of DB213 as well as its brain uptake and distribution in C57 wild type mice, R6/2 Huntington's disease mice and Sprague-Dawley (SD) rats via intranasal administration. The biopharmaceutic characteristics of DB213 were investigated in vitro using Calu-3/MDCK/HEK293 cell lines and brain slices for its membrane transport, equilibrium dialysis for its plasma protein/brain tissue bindings and liver/brain microsomes incubation for its enzyme kinetics profiles.
View Article and Find Full Text PDFPlanar cell polarity (PCP) describes a cell-cell communication process through which individual cells coordinate and align within the plane of a tissue. In this study, we show that overexpression of , a PCP gene, triggers neuronal apoptosis via the dishevelled/Rac1 GTPase/MEKK1/JNK/caspase signalling axis. Consistent with this finding, endogenous expression is upregulated in models of polyglutamine (polyQ) diseases and in fibroblasts from spinocerebellar ataxia type 3 (SCA3) patients.
View Article and Find Full Text PDFIn the cerebellar cortex, Purkinje cells (PCs) receive signals from different inputs through their extensively branched dendrites and serve as an integration centre. Defects in the dendritic development of PCs thus disrupt cerebellar circuitry and cause ataxia. Here we report that specific inactivation of both Lhx1 and Lhx5 in postnatal PCs results in ataxic mutant mice with abnormal dendritic development.
View Article and Find Full Text PDFThe Yorkie homologues YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif, also known as WWTR1), effectors of the Hippo pathway, have been identified as mediators for mechanical stimuli. However, the role of YAP/TAZ in haemodynamics-induced mechanotransduction and pathogenesis of atherosclerosis remains unclear. Here we show that endothelial YAP/TAZ activity is regulated by different patterns of blood flow, and YAP/TAZ inhibition suppresses inflammation and retards atherogenesis.
View Article and Find Full Text PDFThe transcription factor Brachyury (T) gene is expressed throughout primary mesoderm (primitive streak and notochord) during early embryonic development and has been strongly implicated in the genesis of chordoma, a sarcoma of notochord cell origin. Additionally, T expression has been found in and proposed to play a role in promoting epithelial-mesenchymal transition (EMT) in various other types of human tumors. However, the role of T in normal mammalian notochord development and function is still not well-understood.
View Article and Find Full Text PDFBackground: Shellfish hypersensitivity is among the most common food allergies. A murine model of IgE-mediated shrimp allergy has been established in our laboratory. The aim of this study is to determine the intestinal histological changes and cytokine expression profile of this model sensitized with the major shellfish allergen tropomyosin.
View Article and Find Full Text PDFLhx1 encodes a LIM homeobox transcription factor that is expressed in the primitive streak, mesoderm and anterior mesendoderm of the mouse embryo. Using a conditional Lhx1 flox mutation and three different Cre deleters, we demonstrated that LHX1 is required in the anterior mesendoderm, but not in the mesoderm, for formation of the head. LHX1 enables the morphogenetic movement of cells that accompanies the formation of the anterior mesendoderm, in part through regulation of Pcdh7 expression.
View Article and Find Full Text PDFBackground: The high mobility group (HMG) family transcription factor Sox9 is critical for induction and maintenance of neural stem cell pool in the central nervous system (CNS). In the spinal cord and retina, Sox9 is also the master regulator that defines glial fate choice by mediating the neurogenic-to-gliogenic fate switch. On the other hand, the genetic repertoire governing the maintenance and fate decision of neural progenitor pool in the cerebellum has remained elusive.
View Article and Find Full Text PDFThe canonical bone morphogenetic proteins (BMPs) signaling have been shown to mediate many embryonic developmental processes. Due to its complexity, there are still many unknowns about this signal pathway including the Smad usage and requirement. Cerebellum, one of the most studied neural organs in development biology, requires canonical BMP signaling for stem cell specification.
View Article and Find Full Text PDFThe lysosome is a membrane-bound organelle involved in the turnover of various intracellular and extracellular macromolecules. These are degraded by acidic hydrolases in the lumen of lysosome. The lysosomal membrane is important not only in retaining the acidic hydrolases to protect cells against cytosolic proteolysis, but it also facilitates protein trafficking though organelle fusion.
View Article and Find Full Text PDFThe female reproductive tract organs of mammals, including the oviducts, uterus, cervix and upper vagina, are derived from the Müllerian ducts, a pair of epithelial tubes that form within the mesonephroi. The Müllerian ducts form in a rostral to caudal manner, guided by and dependent on the Wolffian ducts that have already formed. Experimental embryological studies indicate that caudal elongation of the Müllerian duct towards the urogenital sinus occurs in part by proliferation at the ductal tip.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2014
Objective: Bone morphogenic protein 4 (BMP4) is involved in the development of endothelial dysfunction in hypertension. This study investigated whether the inhibition of BMP4 signaling improves endothelial function in db/db diabetic mice.
Approach And Results: Male db/db mice were treated with noggin via osmotic pump infusion (1 µg/[h·kg(-1)]) for 2 weeks.