Guidance cues trigger fast responses in axonal growth cones such as directional turning and collapse that require local protein synthesis. An attractive cue-gradient, such as Netrin-1, triggers synthesis of β-actin localized to the near-side compartment of the growth cone that promotes F-actin assembly and attractive steering. How this precise spatial asymmetry in mRNA translation arises across the small expanse of the growth cone is poorly understood.
View Article and Find Full Text PDFFS102 is a HER2-specific Fcab (Fc fragment with antigen binding), which binds HER2 with high affinity and recognizes an epitope that does not overlap with those of trastuzumab or pertuzumab. In tumor cells that express high levels of HER2, FS102 caused profound HER2 internalization and degradation leading to tumor cell apoptosis. The antitumor effect of FS102 in patient-derived xenografts (PDXs) correlated strongly with the HER2 amplification status of the tumors.
View Article and Find Full Text PDFCross-modal regulation of visual performance by olfactory stimuli begins in the retina, where dopaminergic interneurons receive projections from the olfactory bulb. However, we do not understand how olfactory stimuli alter the processing of visual signals within the retina. We investigated this question by in vivo imaging activity in transgenic zebrafish expressing SyGCaMP2 in bipolar cell terminals and GCaMP3.
View Article and Find Full Text PDFSensory systems continually adjust the way stimuli are processed. What are the circuit mechanisms underlying this plasticity? We investigated how synapses in the retina of zebrafish adjust to changes in the temporal contrast of a visual stimulus by imaging activity in vivo. Following an increase in contrast, bipolar cell synapses with strong initial responses depressed, whereas synapses with weak initial responses facilitated.
View Article and Find Full Text PDFWe have developed a compartmentalised culture model for the purification of axonal mRNA from embryonic, neonatal and adult rat dorsal root ganglia. This mRNA was used un-amplified for RT-qPCR. We assayed for the presence of axonal mRNAs encoding molecules known to be involved in axon growth and guidance.
View Article and Find Full Text PDFPhotoconvertible fluorescent proteins, such as Kaede, can be switched irreversibly from their native color to a new one. This property can be exploited to visualize de novo mRNA translation, because newly synthesized proteins can be distinguished from preexisting ones by their color. In this protocol, Kaede cDNA linked to the 3' untranslated region (UTR) of beta-actin is delivered into cells fated to become the retina by injection into Xenopus blastomeres.
View Article and Find Full Text PDFBackground: Blastomere injection of mRNA or antisense oligonucleotides has proven effective in analyzing early gene function in Xenopus. However, functional analysis of genes involved in neuronal differentiation and axon pathfinding by this method is often hampered by earlier function of these genes during development. Therefore, fine spatio-temporal control of over-expression or knock-down approaches is required to specifically address the role of a given gene in these processes.
View Article and Find Full Text PDFLocal protein synthesis regulates the turning of growth cones to guidance cues, yet little is known about which proteins are synthesized or how they contribute to directional steering. Here we show that beta-actin mRNA resides in Xenopus laevis retinal growth cones where it binds to the RNA-binding protein Vg1RBP. Netrin-1 induces the movement of Vg1RBP granules into filopodia, suggesting that it may direct the localization and translation of mRNAs in growth cones.
View Article and Find Full Text PDFSlits mediate multiple axon guidance decisions, but the mechanisms underlying the responses of growth cones to these cues remain poorly defined. We show here that collapse induced by Slit2-conditioned medium (Slit2-CM) in Xenopus retinal growth cones requires local protein synthesis (PS) and endocytosis. Slit2-CM elicits rapid activation of translation regulators and MAP kinases in growth cones, and inhibition of MAPKs or disruption of heparan sulfate blocks Slit2-CM-induced PS and repulsion.
View Article and Find Full Text PDFWe have examined expression of L1 and the polysialic acid-associated form of the neural cell adhesion molecule (PSA-NCAM) in mouse embryos during the major period of axon growth in the retinofugal pathway to determine whether they are expressed in patterns that relate to the changes in axon organization in the pathway. Immunostaining for L1 and PSA-NCAM was found on all axons in the retina and the optic stalk. In the chiasm, while L1 immunoreactivity remained high on the axons, PSA-NCAM staining was obviously reduced.
View Article and Find Full Text PDF