Publications by authors named "Kin L Siu"

We have previously shown that circulating levels of tetrahydrobiopterin (HB) function as a robust biomarker for aortic aneurysms in several independent animal models. In the present study, we examined diagnostic and predictive values of circulating HB levels in human patients of thoracic aortic aneurysm (TAA) and abdominal aortic aneurysm (AAA) for the first time, while clinically applicable biomarkers for aortic aneurysms have never been previously available. Ninety-five patients scheduled for TAA repair surgeries and 53 control subjects were recruited at University of California Los Angeles (UCLA) Ronald Regan Medical Center, while 44 control subjects and 29 AAA patients were recruited through National Institute of Health (NIH) National Disease Research Interchange (NDRI) program.

View Article and Find Full Text PDF

In the present study we aimed to identify novel mechanisms and therapeutics for thoracic aortic aneurysm (TAA) in Fbn1 Marfan Syndrome (MFS) mice. The expression of mature/active TGFβ and its downstream effector NOX4 were upregulated while tetrahydrobiopterin (HB) salvage enzyme dihydrofolate reductase (DHFR) was downregulated in Fbn1 mice. In vivo treatment with anti-TGFβ completely attenuated NOX4 expression, restored DHFR protein abundance, reduced ROS production, recoupled eNOS and attenuated aneurysm formation.

View Article and Find Full Text PDF

Hypertension and abdominal aortic aneurysm (AAA) are severe cardiovascular diseases with incompletely defined molecular mechanisms. In the current study we generated dihydrofolate reductase (DHFR) knockout mice for the first time to examine its potential contribution to the development of hypertension and AAA, as well as the underlying molecular mechanisms. Whereas the homozygote knockout mice were embryonically lethal, the heterozygote knockout mice had global reduction in DHFR protein expression and activity.

View Article and Find Full Text PDF

We have shown that hydrogen peroxide (HO) downregulates tetrahydrobiopterin salvage enzyme DHFR (dihydrofolate reductase) to result in eNOS (endothelial NO synthase) uncoupling and elevated blood pressure. Here, we aimed to delineate molecular mechanisms underlying HO downregulation of endothelial DHFR by examining transcriptional pathways hypothesized to modulate DHFR expression and effects on blood pressure regulation of targeting these novel mechanisms. HO dose and time dependently attenuated DHFR mRNA and protein expression and enzymatic activity in endothelial cells.

View Article and Find Full Text PDF

Unlabelled: Restenosis after angioplasty is a serious clinical problem that can result in re-occlusion of the coronary artery. Although current drug-eluting stents have proved to be more effective in reducing restenosis, they have drawbacks of inhibiting reendothelialization to promote thrombosis. New treatment options are in urgent need.

View Article and Find Full Text PDF

Oxidative stress plays an important role in the formation of abdominal aortic aneurysm (AAA), and we have recently established a causal role of uncoupled eNOS in this severe human disease. We have also shown that activation of NADPH oxidase (NOX) lies upstream of uncoupled eNOS. Therefore, identification of the specific NOX isoforms that are required for eNOS uncoupling and AAA formation would ultimately lead to novel therapies for AAA.

View Article and Find Full Text PDF

The endothelium is exposed to various flow patterns such as vasoprotective unidirectional laminar shear stress (LSS) and atherogenic oscillatory shear stress (OSS). A software-controlled, valve-operated OsciFlow device with parallel chambers was used to apply LSS and OSS to endothelial cells. Although LSS inhibited superoxide over time, OSS time-dependently increased superoxide production from endothelial cells.

View Article and Find Full Text PDF

Rupture of abdominal aortic aneurysm (AAA) is a lethal event. No oral medicine has been available to prevent or treat AAA. We have recently identified a novel mechanism of eNOS uncoupling by which AAA develops, in angiotensin II (Ang II) infused hyperphenylalaninemia 1 (hph-1) mice.

View Article and Find Full Text PDF

Rupture of abdominal aortic aneurysm (AAA) is unpredictable and lethal. A clinically valid biomarker to monitor the disease has not been available. Based on our recent discoveries that uncoupled endothelial nitric oxide synthase (eNOS)/tetrahydrobiopterin deficiency plays a causal role in various models of AAA, the present study examined the relationship between circulating and tissue levels of tetrahydrobiopterin (H4B) in angiotensin II-infused hyperphenylalaninemia (hph-1) and apoE null mice.

View Article and Find Full Text PDF

In this work, we used a sensitive and noninvasive computational method to assess diabetic cardiovascular autonomic neuropathy (DCAN) from pulse oximeter (photoplethysmographic; PPG) recordings from mice. The method, which could be easily applied to humans, is based on principal dynamic mode (PDM) analysis of heart rate variability (HRV). Unlike the power spectral density, PDM has been shown to be able to separately identify the activities of the parasympathetic and sympathetic nervous systems without pharmacological intervention.

View Article and Find Full Text PDF

Despite an established role of mitochondrial dysfunction in cardiac ischemia/reperfusion (I/R) injury, the upstream activators have remained incompletely defined. We have recently identified an innovative role of exogenously applied netrin-1 in cardioprotection, which is mediated by increased nitric oxide (NO) bioavailability. Here, we tested the hypothesis that this "pharmacological" treatment of netrin-1 preserves mitochondrial function via novel mechanisms that are NO dependent.

View Article and Find Full Text PDF

Oxidative stress has been implicated in cardiac arrhythmia, although a causal relationship remains undefined. We have recently demonstrated a marked up-regulation of NADPH oxidase isoform 4 (NOX4) in patients with atrial fibrillation, which is accompanied by overproduction of reactive oxygen species (ROS). In this study, we investigated the impact on the cardiac phenotype of NOX4 overexpression in zebrafish.

View Article and Find Full Text PDF

Reperfusion injury of the heart is a severe complication of angioplasty treatment of acute myocardial ischemia, for which no therapeutics are currently available. The present study aimed to identify whether and how a novel protein, netrin-1, induces cardioprotection in vivo during ischemia/reperfusion (I/R) injury. Wild type (WT) C57BL6/J mice were subjected to a 30 min coronary occlusion followed by a 24h reperfusion with vehicle (normal saline), netrin-1, UO126 (MEK1/2 inhibitor), PTIO (nitric oxide/NO scavenger), netrin-1/UO126 or netrin-1/PTIO intraventricularly.

View Article and Find Full Text PDF

We have previously shown that eNOS uncoupling mediates abdominal aortic aneurysm (AAA) formation in hph-1 mice. In the present study we examined whether recoupling of eNOS prevents AAA formation in a well-established model of Angiotensin II-infused apolipoprotein E (apoE) null mice by targeting some common pathologies of AAA. Infusion of Ang II resulted in a 92% incidence rate of AAA in the apoE null animals.

View Article and Find Full Text PDF

Obesity is associated with vascular diseases that are often attributed to vascular oxidative stress. We tested the hypothesis that vascular oxidative stress could induce obesity. We previously developed mice that overexpress p22phox in vascular smooth muscle, tg(sm/p22phox), which have increased vascular ROS production.

View Article and Find Full Text PDF

We compare the influence of time-frequency methods on analysis of time-varying renal autoregulation properties. Particularly, we examine if detection probabilities are similar for amplitude and frequency modulation for a modulated simulation signal among five time-frequency approaches, and if time-varying changes in system gain are detected using four approaches for estimating time-varying transfer functions. Detection of amplitude and frequency modulation varied among methods and was dependent upon background noise added to the simulated data.

View Article and Find Full Text PDF

It has been shown that endothelial NO synthase (eNOS) uncoupling occurs in hypertension and atherosclerosis. However, its causal role in vascular pathogenesis has not been characterized previously. Here, we challenged eNOS preuncoupled hyperphenylalaninemia (hph)-1 mice (deficient in eNOS cofactor tetrahydrobiopterin biosynthetic enzyme GTPCHI) with angiotensin II (Ang II; 0.

View Article and Find Full Text PDF

The cross-bispectrum is an approach to detect the presence of quadratic phase coupling (QPC) between different components in bivariate signals. Quantification of QPC is by means of the cross-bicoherence index (CBI). The major limitations of the CBI are that it favors only the strongly coupled signals and its accuracy becomes compromised with noise and low coupling strength.

View Article and Find Full Text PDF

We investigated whether autonomic nervous system imbalance imposed by pharmacological blockades and associated with acute myocardial infarction (AMI) is manifested as modifications of the nonlinear interactions in heart rate variability signal using a statistically based bispectrum method. The statistically based bispectrum method is an ideal approach for identifying nonlinear couplings in a system and overcomes the previous limitation of determining in an ad hoc way the presence of such interactions. Using the improved bispectrum method, we found significant nonlinear interactions in healthy young subjects, which were abolished by the administration of atropine but were still present after propranolol administration.

View Article and Find Full Text PDF

The bispectrum is a method to detect the presence of phase coupling between different components in a signal. The traditional way to quantify phase coupling is by means of the bicoherence index, which is essentially a normalized bispectrum. The major drawback of the bicoherence index (BCI) is that determination of significant phase coupling becomes compromised with noise and low coupling strength.

View Article and Find Full Text PDF

This study aims to examine the presence of a possible third renal autoregulatory mechanism in the very low frequency (VLF) band (approximately 10 mHz) using a high-resolution time- frequency spectral method. Blood pressure and renal blood flow data were measured from conscious and anesthetized Sprague-Dawley and spontaneously hypertensive rats, at the level of the whole kidney (via ultrasound flow probe) and local cortical tissue of a kidney (via laser Doppler flow probe). In addition, N-nitro-L-arginine (LNAME) was used in order to assess the effect of nitric oxide on the third mechanism.

View Article and Find Full Text PDF