Publications by authors named "Kin K Leung"

Federated learning (FL) allows model training from local data collected by edge/mobile devices while preserving data privacy, which has wide applicability to image and vision applications. A challenge is that client devices in FL usually have much more limited computation and communication resources compared to servers in a data center. To overcome this challenge, we propose PruneFL -a novel FL approach with adaptive and distributed parameter pruning, which adapts the model size during FL to reduce both communication and computation overhead and minimize the overall training time, while maintaining a similar accuracy as the original model.

View Article and Find Full Text PDF

Importance: Systems-level barriers to diabetes care could be improved with population health planning tools that accurately discriminate between high- and low-risk groups to guide investments and targeted interventions.

Objective: To develop and validate a population-level machine learning model for predicting type 2 diabetes 5 years before diabetes onset using administrative health data.

Design, Setting, And Participants: This decision analytical model study used linked administrative health data from the diverse, single-payer health system in Ontario, Canada, between January 1, 2006, and December 31, 2016.

View Article and Find Full Text PDF

Across jurisdictions, government and health insurance providers hold a large amount of data from patient interactions with the healthcare system. We aimed to develop a machine learning-based model for predicting adverse outcomes due to diabetes complications using administrative health data from the single-payer health system in Ontario, Canada. A Gradient Boosting Decision Tree model was trained on data from 1,029,366 patients, validated on 272,864 patients, and tested on 265,406 patients.

View Article and Find Full Text PDF

Many human diseases are associated with aberrant regulation of phosphoprotein signaling networks. Src homology 2 (SH2) domains represent the major class of protein domains in metazoans that interact with proteins phosphorylated on the amino acid residue tyrosine. Although current SH2 domain prediction algorithms perform well at predicting the sequences of phosphorylated peptides that are likely to result in the highest possible interaction affinity in the context of random peptide library screens, these algorithms do poorly at predicting the interaction potential of SH2 domains with physiologically derived protein sequences.

View Article and Find Full Text PDF

First-generation interaction maps of Src homology 2 (SH2) domains with receptor tyrosine kinase (RTK) phosphosites have previously been generated using protein microarray (PM) technologies. Here, we developed a large-scale fluorescence polarization (FP) methodology that was able to characterize interactions between SH2 domains and ErbB receptor phosphosites with higher fidelity and sensitivity than was previously achieved with PMs. We used the FP assay to query the interaction of synthetic phosphopeptides corresponding to 89 ErbB receptor intracellular tyrosine sites against 93 human SH2 domains and 2 phosphotyrosine binding (PTB) domains.

View Article and Find Full Text PDF

While proteomic methods have illuminated many areas of biological protein space, many fundamental questions remain with regard to systems-level relationships between mRNAs, proteins and cell behaviors. While mass spectrometric methods offer a panoramic picture of the relative expression and modification of large numbers of proteins, they are neither optimal for the analysis of predefined targets across large numbers of samples nor for assessing differences in proteins between individual cells or cell compartments. Conversely, traditional antibody-based methods are effective at sensitively analyzing small numbers of proteins across small numbers of conditions, and can be used to analyze relative differences in protein abundance and modification between cells and cell compartments.

View Article and Find Full Text PDF