Publications by authors named "Kimy Yeung"

Statistical copolymers are commercially important because their properties can be tuned by comonomer selection and composition. Rubbery-state styrene (S)/n-butyl acrylate (nBA) copolymers have previously been reported to exhibit facile, autonomous self-healing over a narrow composition band (47/53 to 53/47 mol%). The need for a narrow composition band is explained by alternating comonomer sequences that accommodate interchain secondary bonding.

View Article and Find Full Text PDF

Rapid point-of-need assays are used to detect abundant biomarkers. The development of signal amplification reactions could extend these assays to screening and triaging of patients for trace levels of biomarkers, even in resource-limited settings. We, and others, have developed small molecule-based signal amplification reactions that eventually may be useful in this context.

View Article and Find Full Text PDF

This Communication describes a strategy for incorporating detection units onto each repeating unit of self-immolative CDr polymers. This strategy enables macroscopic plastics to respond quickly to specific applied molecular signals that react with the plastic at the solid-liquid interface between the plastic and surrounding fluid. The response is a signal-induced depolymerization reaction that is continuous and complete from the site of the reacted detection unit to the end of the polymer.

View Article and Find Full Text PDF

Fluorescence assays often require specialized equipment and, therefore, are not easily implemented in resource-limited environments. Herein we describe a point-of-care assay strategy in which fluorescence in the visible region is used as a readout, while a camera-equipped cellular phone is used to capture the fluorescent response and quantify the assay. The fluorescence assay is made possible using a paper-based microfluidic device that contains an internal fluidic battery, a surface-mount LED, a 2-mm section of a clear straw as a cuvette, and an appropriately-designed small molecule reagent that transforms from weakly fluorescent to highly fluorescent when exposed to a specific enzyme biomarker.

View Article and Find Full Text PDF

This Communication describes a thermally-stable small molecule and a corresponding assay strategy that autonomously amplifies a colorimetric signal when a specific enzyme biomarker is detected.

View Article and Find Full Text PDF

This communication describes the first paper-based microfluidic device that is capable of generating its own power when a sample is added to the device. The microfluidic device contains galvanic cells (that we term "fluidic batteries") integrated directly into the microfluidic channels, which provides a direct link between a power source and an analytical function within the device. This capability is demonstrated using an example device that simultaneously powers a surface-mount UV LED and conducts an on-chip fluorescence assay.

View Article and Find Full Text PDF

A general design is presented for a stimulus-responsive small molecule that is capable of responding to a specific applied chemical or physical signal by releasing two different types of pendant small molecules and a colorimetric indicator simultaneously. A key aspect of this design is the ease with which these reagents are prepared: typically, only four synthetic steps are required. Moreover, the modular construction strategy provides access to stimuli-responsive reagents that are capable of (i) responding to a variety of applied signals and (ii) releasing a number of different small molecules that contain primary alcohols, secondary alcohols, or phenols.

View Article and Find Full Text PDF