For microbiological management of water quality, it is important to identify bacteria and to understand the community structure. To analyze the community structure during water purification and distribution, we selected a distribution system in which water from other water treatment facilities was not mixed with the target water. Changes in the bacterial community structure during treatment and distribution processes in a slow filtration water treatment facility were analyzed using 16S rRNA gene amplicon sequencing with a portable sequencer MinION.
View Article and Find Full Text PDFPrivate wells are used daily worldwide as convenient household water sources. In Japan, where water supply coverage is high, well water is occasionally used for non-potable purposes, such as irrigation and watering. Currently, the main microbiological test of well water is designed to detect Escherichia coli, which is an indicator of fecal contamination, using culture methods.
View Article and Find Full Text PDFThe control of microbes in manned spaceflight is essential to reducing the risk of infection and maintaining crew health. The primary issue is ensuring the safety of a potable water system, where simultaneous monitoring of microbial abundance and community structure is needed. In this paper, we develop a flow cytometry-based counting protocol targeting cellular flavin autofluorescence as a tool for rapid monitoring of bacterial cells in water.
View Article and Find Full Text PDFUnderstanding behavioral differences between intraspecific genotypes of aquatic animals is challenging because we cannot directly observe the animals underwater or visually distinguish morphologically similar counterparts. Here, we tested a new monitoring tool that uses environmental DNA (eDNA), an assemblage of DNA in environmental water, to specifically detect Japanese native and introduced non-native genotypes of common carp () in Lake Biwa, Japan, and estimated differences between the two genotypes in the use of inland habitats. We monitored the ratios of native and non-native single nucleotide polymorphism alleles of a mitochondrial locus of common carp in a lagoon connected to Lake Biwa for 3 years using eDNA.
View Article and Find Full Text PDFThe recently developed environmental DNA (eDNA) analysis has been used to estimate the distribution of aquatic vertebrates by using mitochondrial DNA (mtDNA) as a genetic marker. However, mtDNA markers have certain drawbacks such as variable copy number and maternal inheritance. In this study, we investigated the potential of using nuclear DNA (ncDNA) as a more reliable genetic marker for eDNA analysis by using common carp (Cyprinus carpio).
View Article and Find Full Text PDFUnlabelled: Lethal parasitism of large phytoplankton by chytrids (microscopic zoosporic fungi) may play an important role in organic matter and nutrient cycling in aquatic environments by shunting carbon away from hosts and into much smaller zoospores, which are more readily consumed by zooplankton. This pathway provides a mechanism to more efficiently retain carbon within food webs and reduce export losses. However, challenges in accurate identification and quantification of chytrids have prevented a robust assessment of the relative importance of parasitism for carbon and energy flows within aquatic systems.
View Article and Find Full Text PDFThe invasion of non-native species that are closely related to native species can lead to competitive elimination of the native species and/or genomic extinction through hybridization. Such invasions often become serious before they are detected, posing unprecedented threats to biodiversity. A Japanese native strain of common carp (Cyprinus carpio) has become endangered owing to the invasion of non-native strains introduced from the Eurasian continent.
View Article and Find Full Text PDFEnvironmental DNA (eDNA) has been used to investigate species distributions in aquatic ecosystems. Most of these studies use real-time polymerase chain reaction (PCR) to detect eDNA in water; however, PCR amplification is often inhibited by the presence of organic and inorganic matter. In droplet digital PCR (ddPCR), the sample is partitioned into thousands of nanoliter droplets, and PCR inhibition may be reduced by the detection of the end-point of PCR amplification in each droplet, independent of the amplification efficiency.
View Article and Find Full Text PDFAn environmental DNA (eDNA) analysis method has been recently developed to estimate the distribution of aquatic animals by quantifying the number of target DNA copies with quantitative real-time PCR (qPCR). A new quantitative PCR technology, droplet digital PCR (ddPCR), partitions PCR reactions into thousands of droplets and detects the amplification in each droplet, thereby allowing direct quantification of target DNA. We evaluated the quantification accuracy of qPCR and ddPCR to estimate species abundance and biomass by using eDNA in mesocosm experiments involving different numbers of common carp.
View Article and Find Full Text PDFEmerging infectious diseases are of growing concern in wildlife conservation and animal health. To better understand the consequences of these diseases, a key question lies in how they persist in host populations after they emerge. Using a gene expression approach, we investigated the mechanisms underlying the persistence of an emerging virus, Cyprinid herpesvirus 3 (CyHV-3), which has been spreading to wild populations of common carp (Cyprinus carpio) in Japan since 2003.
View Article and Find Full Text PDFCyprinid herpesvirus 3 (CyHV-3) disease is a significant threat for common and koi carp cultivators and for freshwater ecosystems. To determine the prevalence of CyHV-3 in Japanese rivers, a nationwide survey of all national class-A rivers was undertaken in the Summer of 2008. The virus was concentrated from river water samples using the cation-coated filter method.
View Article and Find Full Text PDFEmerging infectious diseases are major threats to wildlife populations. To enhance our understanding of the dynamics of these diseases, we investigated how host reproductive behavior and seasonal temperature variation drive transmission of infections among wild hosts, using the model system of cyprinid herpesvirus 3 (CyHV-3) disease in common carp. Our main findings were as follows: (1) a seroprevalence survey showed that CyHV-3 infection occurred mostly in adult hosts, (2) a quantitative assay for CyHV-3 in a host population demonstrated that CyHV-3 was most abundant in the spring when host reproduction occurred and water temperature increased simultaneously and (3) an analysis of the dynamics of CyHV-3 in water revealed that CyHV-3 concentration increased markedly in breeding habitats during host group mating.
View Article and Find Full Text PDFCyprinid herpesvirus 3 (CyHV-3), a lethal DNA virus that spreads in natural lakes and rivers, infects common carp and koi. We established a quantification method for CyHV-3 that includes a viral concentration method and quantitative PCR combined with an external standard virus. Viral concentration methods were compared using the cation-coated filter and ultrafiltration methods.
View Article and Find Full Text PDFThe disease caused by cyprinid herpesvirus 3 (CyHV-3) brings catastrophic damages to cultivated carp and koi and to natural carp populations; however, the dynamics of the virus in environmental waters are unclear. In July 2007, CyHV-3 DNA was detected in a dead common carp collected from the Yura River in Kyoto Prefecture, Japan, and this was followed by mass mortality. We collected water samples at eight sites along the Yura River for 3 months immediately after confirmation of the disease outbreak and attempted to detect and quantify CyHV-3 DNA in the water samples using molecular biological methods.
View Article and Find Full Text PDFBluegill (Lepomis macrochirus) in Lake Biwa, Japan, feed on benthic invertebrates (benthivorous type), aquatic plants (herbivorous type), and zooplankton (planktivorous type). To evaluate the effect of food on intestinal bacterial microbiota, we characterized and compared the intestinal microbiota of these three types of bluegill in terms of community-level physiological profile (CLPP) and genetic structure. The CLPP was analyzed using Biolog MicroPlates (Biolog, Inc.
View Article and Find Full Text PDF