Publications by authors named "Kimiko Murakami-Murofushi"

Effective blood coagulation prevents inflammation and neuronal loss after brain injury. 2-Carba-cyclic phosphatidic acid (2ccPA), a biotherapeutic for brain injury, inhibits blood extravasation resulting from blood-brain barrier breakdown. However, the hemostasis mechanism of 2ccPA remains unclear.

View Article and Find Full Text PDF

2-carba-cyclic phosphatidic acid (2ccPA) suppresses microglial and astrocyte inflammation for neuronal survival following traumatic brain injury. However, it remains unknown how 2ccPA regulates microglial activation. In this study, to elucidate the 2ccPA behavior in glial communication, we collected the astrocyte conditioned media (ACM) from primary astrocyte cultures that were treated by lipopolysaccharide (LPS) and 2ccPA and analyzed the alteration of microglial inflammation caused by the ACM treatment.

View Article and Find Full Text PDF

We examined the mechanism how 2-carba-cyclic phosphatidic acid (2ccPA), a lipid mediator, regulates neuronal apoptosis in traumatic brain injury (TBI). First, we found 2ccPA suppressed neuronal apoptosis after the injury, and increased the immunoreactivity of tenascin-C (TN-C), an extracellular matrix protein by 2ccPA in the vicinity of the wound region. 2ccPA increased the mRNA expression levels of Tnc in primary cultured astrocytes, and the conditioned medium of 2ccPA-treated astrocytes suppressed the apoptosis of cortical neurons.

View Article and Find Full Text PDF
Article Synopsis
  • Cyclic phosphatidic acid (cPA) and its analogue 2-carba-cyclic phosphatidic acid (2ccPA) are phospholipid mediators that display a variety of biological activities, with some differences from lysophosphatidic acid (LPA).
  • The study focused on 2-carba-lysophosphatidic acid (2carbaLPA), a degradation product of 2ccPA, which was found to activate LPA receptors and induce specific signaling pathways similar to those activated by cPA and LPA.
  • Additionally, 2carbaLPA demonstrated the ability to inhibit autotaxin (ATX) activity, positioning it as a promising β-LPA analogue with potential
View Article and Find Full Text PDF

Lipid-protein interactions play essential roles in many biological phenomena. Lysophospholipid mediators, such as cyclic phosphatidic acid (cPA), have been recognized as secondary messengers, yet few cellular targets for cPA have been identified to date. Furthermore, the molecular mechanism that activates these downstream signaling events remains unknown.

View Article and Find Full Text PDF

Cyclic phosphatidic acid (cPA) is a lysophospholipid mediator that suppresses cancer metastasis and osteoarthritis. It also has neuroprotective roles in diseases such as multiple sclerosis and delayed neuronal death following transient ischemia. In order to take advantage of the properties of cPA for the development of new therapeutic strategies, we have synthesized several cPA derivatives and discovered 2-carba-cPA (2ccPA) as a promising candidate.

View Article and Find Full Text PDF

Background: Obesity is considered to be a risk factor for neurodegenerative- and psychiatric- diseases including Alzheimer's disease, schizophrenia, and depression. A high-lard diet is widely used to induce obesity in model animal experiments, which also leads to anxiety-like and depression-like behaviors. However, the contribution of dietary fat source to these abnormal behaviors in obesity is largely unknown.

View Article and Find Full Text PDF

Astrocytes exhibit an important role in neural lipid metabolism for the regulation of energy balance to supply fatty acids (FAs) and ketone bodies to other neural cells. Lipid droplets (LDs) consisting of neutral- and phospho-lipids increase in the brains of patients with neurodegenerative diseases, such as Alzheimer's disease and multiple sclerosis. However, the role of LDs and its lipid source remains largely unexplored.

View Article and Find Full Text PDF

Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator that contains a unique cyclic phosphate ring at the -2 and -3 positions of its glycerol backbone. Using mouse models for multiple sclerosis (cuprizone-induced demyelination and experimental autoimmune encephalomyelitis) and traumatic brain injury, we revealed that cPA and its metabolically stabilized cPA derivative, 2-carba-cPA (2ccPA), have potential to protect against neuroinflammation. In this study, we investigated whether 2ccPA has anti-inflammatory effect on peripheral immune function or not using inflammation-induced macrophages-like cell line, THP-1 monocytes differentiated by phorbol 12-myristate 13-acetate (PMA).

View Article and Find Full Text PDF

Cyclic phosphatidic acid (cPA) is a simple lipid containing a fatty acid attached at the sn-1 position and a cyclic phosphate ring structure at the sn-2 and sn-3 positions of the glycerol backbone. The pharmacological effects of cPA have been demonstrated in several diseases such as cancer and neuropathic pain; however, the composition of the molecular species of cPA in relative to other lipid species in biological samples is still unclear. Recently, hydrophilic interaction liquid chromatography (HILIC) has demonstrated the ability to perform lipidomic analyses of biological samples.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is caused by physical damage to the brain and it induces blood-brain barrier (BBB) breakdown and inflammation. To diminish the sequelae of TBI, it is important to decrease haemorrhage and alleviate inflammation. In this study, we aimed to determine the effects of 2-carba-cyclic phosphatidic acid (2ccPA) on the repair mechanisms after a stab wound injury as a murine TBI model.

View Article and Find Full Text PDF

After publication of the article [1], it was brought to our attention that an acknowledgement was missing from the original version.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) and LPA1 receptor signaling play a crucial role in the initiation of peripheral nerve injury-induced neuropathic pain through the alternation of pain-related genes/proteins expression and demyelination. However, LPA and its signaling in the brain are still poorly understood. In the present study, we revealed that the LPA5 receptor expression in corpus callosum elevated after the initiation of demyelination, and the hyperalgesia through Aδ-fibers following cuprizone-induced demyelination was mediated by LPA5 signaling.

View Article and Find Full Text PDF

Cyclic phosphatidic acid (cPA), an analog of lysophosphatidic acid, is involved in the regulation of many cellular processes. A sensitive and specific method to quantify the molecular species of cPA is important for studying the physiological and pathophysiological roles of cPA. Here, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based quantification method for the simultaneous detection of cPA species having various fatty acids (16:0, 18:0, 18:1, and 18:2) as well as 2-carba-cPA, a chemically synthesized analog of cPA.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) and cyclic phosphatidic acid (cPA) are one of the lipid mediators regulating cell proliferation and differentiation through the activation of LPA receptors. An LPA receptor-mediated signal is important for the development of the central nervous system, while it has been demonstrated that LPA caused microglial activation and astroglial dysfunction. Previously, we have reported that cPA and carba analog of cPA, 2-O-carba-cPA (2ccPA), protected neural damage caused by transient ischemia.

View Article and Find Full Text PDF

Hyaluronic acid is a major component of the extracellular matrix, which is important for skin hydration. As aging brings skin dehydration, we aimed to clarify the mRNA expression of hyaluronic acid-related proteins in human skin fibroblasts from donors of various ages (range 0.7-69 years).

View Article and Find Full Text PDF

Background: Multiple sclerosis is a neuroinflammatory demyelinating and neurodegenerative disease of the central nervous system characterized by recurrent and progressive demyelination/remyelination cycles, neuroinflammation, oligodendrocyte loss, demyelination, and axonal degeneration. Cyclic phosphatidic acid (cPA) is a natural phospholipid mediator with a unique cyclic phosphate ring structure at the sn-2 and sn-3 positions of the glycerol backbone. We reported earlier that cPA elicits a neurotrophin-like action and protects hippocampal neurons from ischemia-induced delayed neuronal death.

View Article and Find Full Text PDF

Atherosclerosis is a disease characterized by building up plaques formation and leads to a potentially serious condition in which arteries are clogged by fatty substances such as cholesterol. Increasing evidence suggests that atherosclerosis is accelerated in type 2 diabetes. Recent study reported that high level of alkyl glycerophosphate (AGP) was accumulated in atherosclerotic lesions.

View Article and Find Full Text PDF

The proliferation and differentiation of cerebellar granule cell precursors (GCPs) are highly regulated spatiotemporally during development. We focused on cyclic phosphatidic acid (cPA) as a lipid mediator with a cyclic phosphate group as a regulatory factor of GCPs. While its structure is similar to that of lysophosphatidic acid (LPA), its function is very unique.

View Article and Find Full Text PDF

Genetic, physiological and environmental factors are implicated in colorectal carcinogenesis. Mutations in the mutL homolog 1 (MLH1) gene, one of the DNA mismatch repair genes, are a main cause of hereditary colon cancer syndromes such as Lynch syndrome. Long-term chronic inflammation is also a key risk factor, responsible for colitis-associated colorectal cancer; radiation exposure is also known to increase colorectal cancer risk.

View Article and Find Full Text PDF

Background: Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator with a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. Natural cPA and its chemically stabilized cPA derivative, 2-carba-cPA (2ccPA), inhibit chronic and acute inflammation, and 2ccPA attenuates neuropathic pain. Osteoarthritis (OA) is a degenerative disease frequently associated with symptoms such as inflammation and joint pain.

View Article and Find Full Text PDF

Multiple sclerosis is a chronic demyelinating disease of the central nervous system leading to progressive cognitive and motor dysfunction, which is characterized by neuroinflammation, demyelination, astrogliosis, loss of oligodendrocytes, and axonal pathologies. Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator with a unique cyclic phosphate ring structure at the sn-2 and sn-3 positions of the glycerol backbone. cPA elicits a neurotrophin-like action and protects hippocampal neurons from ischemia-induced delayed neuronal death.

View Article and Find Full Text PDF

Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator and an analog of the growth factor-like phospholipid lysophosphatidic acid (LPA). cPA has a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We showed before that a metabolically stabilized cPA derivative, 2-carba-cPA, relieved osteoarthritis pathogenesis in vivo and induced hyaluronic acid synthesis in human osteoarthritis synoviocytes in vitro.

View Article and Find Full Text PDF

Cholesteryl glucoside (β-ChlGlc), a monoglucosylated derivative of cholesterol, is involved in the regulation of heat shock responses. β-ChlGlc, which is rapidly induced in response to heat shock, activates heat shock transcription factor 1 (HSF1) leading to the expression of heat shock protein 70 (HSP70) in human fibroblasts. Identification and biochemical characterization of the enzyme responsible for β-ChlGlc formation is important for a complete understanding of the molecular mechanisms leading to HSP70-induction following heat shock.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhr4j4ug2d505pj12389vgnqaqc4fvlao): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once