Publications by authors named "Kimihito Kawabata"

DNA hypomethylating agents (HMAs) are used for the treatment of myeloid malignancies, although their therapeutic effects have been unsatisfactory. Here we show that CRISPR-Cas9 screening reveals that knockout of topoisomerase 1-binding arginine/serine-rich protein (TOPORS), which encodes a ubiquitin/SUMO E3 ligase, augments the efficacy of HMAs on myeloid leukemic cells with little effect on normal hematopoiesis, suggesting that TOPORS is involved in resistance to HMAs. HMAs are incorporated into the DNA and trap DNA methyltransferase-1 (DNMT1) to form DNA-DNMT1 crosslinks, which undergo SUMOylation, followed by proteasomal degradation.

View Article and Find Full Text PDF

Immunotherapy has attracted considerable attention as a therapeutic strategy for cancers including acute myeloid leukemia (AML). In this study, we found that the development of several aggressive subtypes of AML is slower in Rag2 mice despite the lack of B and T lymphocytes, even compared to the immunologically normal C57BL/6 mice. Furthermore, an orally active p53-activating drug shows stronger antileukemia effect on AML in Rag2 mice than C57BL/6 mice.

View Article and Find Full Text PDF
Article Synopsis
  • * MDS cells inhibit the normal functioning of mesenchymal stem cells (MSCs), crucial for supporting blood stem cells, by interfering with their development and bone metabolism.
  • * The study reveals that MDS cells release extracellular vesicles that contribute to this suppression, but this effect can be reversed by promoting MSC differentiation, suggesting potential pathways for treatment.
View Article and Find Full Text PDF

A hallmark of acute myeloid leukemia (AML) is the inability of self-renewing malignant cells to mature into a non-dividing terminally differentiated state. This differentiation block has been linked to dysregulation of multiple cellular processes, including transcriptional, chromatin, and metabolic regulation. The transcription factor HOXA9 and the histone demethylase LSD1 are examples of such regulators that promote differentiation blockade in AML.

View Article and Find Full Text PDF

Patients with acute myeloid leukemia (AML) frequently relapse after chemotherapy, yet the mechanism by which AML reemerges is not fully understood. Herein, we show that primary AML cells enter a senescence-like phenotype following chemotherapy and . This is accompanied by induction of senescence/inflammatory and embryonic diapause transcriptional programs, with downregulation of and leukemia stem cell genes.

View Article and Find Full Text PDF

B-cell lymphoma 6 (BCL6) is a transcription repressor and proto-oncogene that plays a crucial role in the innate and adaptive immune system and lymphoid neoplasms. However, its role in myeloid malignancies remains unclear. Here, we explored the role of BCL6 in acute myeloid leukemia (AML).

View Article and Find Full Text PDF

Quiescent hematopoietic stem cells (HSCs) are typically dormant, and only a few quiescent HSCs are active. The relationship between "dormant" and "active" HSCs remains unresolved. Here we generate a G marker (GM) mouse line that visualizes quiescent cells and identify a small population of active HSCs (GM), which are distinct from dormant HSCs (GM), within the conventional quiescent HSC fraction.

View Article and Find Full Text PDF

Cancer-associated mutations in genes encoding RNA splicing factors (SFs) commonly occur in leukemias, as well as in a variety of solid tumors, and confer dependence on wild-type splicing. These observations have led to clinical efforts to directly inhibit the spliceosome in patients with refractory leukemias. Here, we identify that inhibiting symmetric or asymmetric dimethylation of arginine, mediated by PRMT5 and type I protein arginine methyltransferases (PRMTs), respectively, reduces splicing fidelity and results in preferential killing of SF-mutant leukemias over wild-type counterparts.

View Article and Find Full Text PDF

ASXL1 mutations occur frequently in myeloid neoplasms and are associated with poor prognosis. However, the mechanisms by which mutant ASXL1 induces leukaemogenesis remain unclear. In this study, we report mutually reinforcing effects between a C-terminally truncated form of mutant ASXL1 (ASXL1-MT) and BAP1 in promoting myeloid leukaemogenesis.

View Article and Find Full Text PDF

() is frequently mutated in myeloid malignancies and clonal hematopoiesis of indeterminate potential (CHIP). Although loss of ASXL1 promotes hematopoietic transformation, there is growing evidence that mutations might confer an alteration of function. In this study, we identify that physiological expression of a C-terminal truncated Asxl1 mutant in vivo using conditional knock-in (KI) results in myeloid skewing, age-dependent anemia, thrombocytosis, and morphological dysplasia.

View Article and Find Full Text PDF

ASXL1 plays key roles in epigenetic regulation of gene expression through methylation of histone H3K27, and disruption of ASXL1 drives myeloid malignancies, at least in part, via derepression of posterior HOXA loci. However, little is known about the identity of proteins that interact with ASXL1 and about the functions of ASXL1 in modulation of the active histone mark, such as H3K4 methylation. In this study, we demonstrate that ASXL1 is a part of a protein complex containing HCFC1 and OGT; OGT directly stabilizes ASXL1 by O-GlcNAcylation.

View Article and Find Full Text PDF

Recent progress in high-speed sequencing technology has revealed that tumors harbor novel mutations in a variety of genes including those for molecules involved in epigenetics and splicing, some of which were not categorized to previously thought malignancy-related genes. However, despite thorough identification of mutations in solid tumors and hematological malignancies, how these mutations induce cell transformation still remains elusive. In addition, each tumor usually contains multiple mutations or sometimes consists of multiple clones, which makes functional analysis difficult.

View Article and Find Full Text PDF

Although there are many studies focusing on the molecular pathways underlying lung vascular morphogenesis, the extracellular matrix (ECM)-dependent regulation of mesenchymal cell differentiation in vascular smooth muscle development needs better understanding. In this study, we demonstrate that the paired related homeobox gene transcription factor Prx1 maintains the elastic ECM properties, which are essential for vascular smooth muscle precursor cell differentiation. We have found that Prx1(null) mouse lungs exhibit defective vascular smooth muscle development, downregulated elastic ECM expression, and compromised transforming growth factor (TGF)-β localization and signaling.

View Article and Find Full Text PDF

Two types of CCAAT-enhancer-binding protein α (C/EBPα) mutants are found in acute myeloid leukemia (AML) patients: N-terminal frame-shift mutants (C/EBPα-N(m)) generating p30 as a dominant form and C-terminal basic leucine zipper domain mutants (C/EBPα-C(m)). We have previously shown that C/EBPα-K304_R323dup belonging to C/EBPα-C(m), but not C/EBPα-T60fsX159 belonging to C/EBPα-N(m), alone induced AML in mouse bone marrow transplantation (BMT) models. Here we show that various C/EBPα-C(m) mutations have a similar, but not identical, potential in myeloid leukemogenesis.

View Article and Find Full Text PDF

Myeloid malignancies consist of acute myeloid leukemia (AML), myelodysplastic syndromes (MDS) and myeloproliferative neoplasm (MPN). The latter two diseases have preleukemic features and frequently evolve to AML. As with solid tumors, multiple mutations are required for leukemogenesis.

View Article and Find Full Text PDF

High levels of HES1 expression are frequently found in BCR-ABL(+) chronic myelogenous leukemia in blast crisis (CML-BC). In mouse bone marrow transplantation (BMT) models, co-expression of BCR-ABL and Hes1 induces CML-BC-like disease; however, the underlying mechanism remained elusive. Here, based on gene expression analysis, we show that MMP-9 is upregulated by Hes1 in common myeloid progenitors (CMPs).

View Article and Find Full Text PDF

We have previously shown that elevated expression of Hairy enhancer of split 1 (Hes1) contributes to blast crisis transition in Bcr-Abl-positive chronic myelogenous leukemia. Here we investigate whether Hes1 is involved in the development of other myeloid neoplasms. Notably, Hes1 expression was elevated in only a few cases of 65 samples with different types of myeloid neoplasms.

View Article and Find Full Text PDF

Recurrent mutations in the gene encoding additional sex combs-like 1 (ASXL1) are found in various hematologic malignancies and associated with poor prognosis. In particular, ASXL1 mutations are common in patients with hematologic malignancies associated with myelodysplasia, including myelodysplastic syndromes (MDSs), and chronic myelomonocytic leukemia. Although loss-of-function ASXL1 mutations promote myeloid transformation, a large subset of ASXL1 mutations is thought to result in stable truncation of ASXL1.

View Article and Find Full Text PDF

Activating mutations of c-Kit are frequently found in acute myeloid leukemia (AML) patients harboring t(8;21) chromosomal translocation generating a fusion protein AML1-ETO. Here we show that an active mutant of c-Kit cooperates with AML1-ETO to induce AML in mouse bone marrow transplantation models. Leukemic cells expressing AML1-ETO with c-Kit(D814V) were serially transplantable.

View Article and Find Full Text PDF

AIDS-related lymphoma (ARL) is a serious complication of HIV infection. We performed MEAM (MCNU + etoposide + cytarabine + L-PAM) regimen with autologous stem cell transplantation (ASCT) for three patients with refractory or relapsed ARL. All three patients had been treated with highly active anti-retroviral therapy (HAART) during the course of the treatment regimen and ASCT.

View Article and Find Full Text PDF