While the ability to acquire non-linearly separable (NLS) classifications is well documented in the study of human category learning, the relative ease of learning compared to a linear separable structure is difficult to evaluate without potential confounds. Medin and Schwanenflugel (Journal of Experimental Psychology: Human Learning and Memory, 7, 355-368, 1981) were the first to demonstrate that NLS classifications are not more difficult to acquire than linearly separable ones when structures are equated in terms of within- and between-category similarities. However, their evidence is less sturdy than might be expected due to non-standard methodology and low sample size.
View Article and Find Full Text PDFThe traditional supervised classification paradigm encourages learners to acquire only the knowledge needed to predict category membership (a discriminative approach). An alternative that aligns with important aspects of real-world concept formation is learning with a broader focus to acquire knowledge of the internal structure of each category (a generative approach). Our work addresses the impact of a particular component of the traditional classification task: the guess-and-correct cycle.
View Article and Find Full Text PDFThe findings of Shepard, Hovland, and Jenkins (1961) on the relative ease of learning 6 elemental types of 2-way classifications have been deeply influential 2 times over: 1st, as a rebuke to pure stimulus generalization accounts, and again as the leading benchmark for evaluating formal models of human category learning. The litmus test for models is the ability to simulate an observed advantage in learning a category structure based on an exclusive-or (XOR) rule over 2 relevant dimensions (Type II) relative to category structures that have no perfectly predictive cue or cue combination (including the linearly-separable Type IV). However, a review of the literature reveals that a Type II advantage over Type IV is found only under highly specific experimental conditions.
View Article and Find Full Text PDF