Publications by authors named "Kimberly Venta"

Objective: The purpose of this study was to investigate the potential of developing an EHR-based model of physician competency, named the Skill Deficiency Evaluation Toolkit for Eliminating Competency-loss Trends (Skill-DETECT), which presents the opportunity to use EHR-based models to inform selection of Continued Medical Education (CME) opportunities specifically targeted at maintaining proficiency.

Methods: The IBM Explorys platform provided outpatient Electronic Health Records (EHRs) representing 76 physicians with over 5000 patients combined. These data were used to develop the Skill-DETECT model, a predictive hybrid model composed of a rule-based model, logistic regression model, and a thresholding model, which predicts cognitive clinical skill deficiencies in internal medicine physicians.

View Article and Find Full Text PDF

Sleep impairment significantly alters human brain structure and cognitive function, but available evidence suggests that adults in developed nations are sleeping less. A growing body of research has sought to use sleep to forecast cognitive performance by modeling the relationship between the two, but has generally focused on vigilance rather than other cognitive constructs affected by sleep, such as reaction time, executive function, and working memory. Previous modeling efforts have also utilized subjective, self-reported sleep durations and were restricted to laboratory environments.

View Article and Find Full Text PDF

We study translocations of gold nanoparticles and nanorods through silicon nitride nanopores and present a method for determining the surface charge of nanorods from the magnitude of the ionic current change as nanorods pass through the pore. Positively charged nanorods and spherical nanoparticles with average diameters 10 nm and average nanorod lengths between 44 and 65 nm were translocated through 40 nm thick nanopores with diameters between 19 and 27 nm in 1, 10, or 100 mM KCl solutions. Nanorod passage through the nanopores decreases ion current in larger diameter pores, as in the case of typical Coulter counters, but it increases ion current in smaller diameter nanopores, likely because of the interaction of the nanopore's and nanoparticle's double layers.

View Article and Find Full Text PDF

In the last two decades, new techniques that monitor ionic current modulations as single molecules pass through a nanoscale pore have enabled numerous single-molecule studies. While biological nanopores have recently shown the ability to resolve single nucleotides within individual DNA molecules, similar developments with solid-state nanopores have lagged, due to challenges both in fabricating stable nanopores of similar dimensions as biological nanopores and in achieving sufficiently low-noise and high-bandwidth recordings. Here we show that small silicon nitride nanopores (0.

View Article and Find Full Text PDF

From their realization just over a decade ago, nanopores in silicon nitride membranes have allowed numerous transport-based single-molecule measurements. Here we report the use of these nanopores as subzeptoliter mixing volumes for the controlled synthesis of metal nanoparticles. Particle synthesis is controlled and monitored through an electric field applied across the nanopore membrane, which is positioned so as to separate electrolyte solutions of a metal precursor and a reducing agent.

View Article and Find Full Text PDF

We report on DNA translocations through nanopores created in graphene membranes. Devices consist of 1-5 nm thick graphene membranes with electron-beam sculpted nanopores from 5 to 10 nm in diameter. Due to the thin nature of the graphene membranes, we observe larger blocked currents than for traditional solid-state nanopores.

View Article and Find Full Text PDF