Negative sense RNA viruses (NSV) include some of the most detrimental human pathogens, including the influenza, Ebola, and measles viruses. NSV genomes consist of one or multiple single-stranded RNA molecules that are encapsidated into one or more ribonucleoprotein (RNP) complexes. These RNPs consist of viral RNA, a viral RNA polymerase, and many copies of the viral nucleoprotein (NP).
View Article and Find Full Text PDFNegative sense RNA viruses (NSV) include some of the most detrimental human pathogens, including the influenza, Ebola and measles viruses. NSV genomes consist of one or multiple single-stranded RNA molecules that are encapsidated into one or more ribonucleoprotein (RNP) complexes. These RNPs consist of viral RNA, a viral RNA polymerase, and many copies of the viral nucleoprotein (NP).
View Article and Find Full Text PDFMicrobiol Mol Biol Rev
December 2023
SUMMARYNegative and ambisense RNA viruses are the causative agents of important human diseases such as influenza, measles, Lassa fever, and Ebola hemorrhagic fever. The viral genome of these RNA viruses consists of one or more single-stranded RNA molecules that are encapsidated by viral nucleocapsid proteins to form a ribonucleoprotein complex (RNP). This RNP acts as protection, as a scaffold for RNA folding, and as the context for viral replication and transcription by a viral RNA polymerase.
View Article and Find Full Text PDFRNA viruses are important human pathogens that cause seasonal epidemics and occasional pandemics. Examples are influenza A viruses (IAV) and coronaviruses (CoV). When emerging IAV and CoV spill over to humans, they adapt to evade immune responses and optimize their replication and spread in human cells.
View Article and Find Full Text PDFRNA viruses are important human pathogens that cause seasonal epidemics and occasional pandemics. Examples are influenza A viruses (IAV) and coronaviruses (CoV). When emerging IAV and CoV spill over to humans, they adapt to evade immune responses and optimize their replication and spread in human cells.
View Article and Find Full Text PDFMEK1 is a protein kinase in the MAPK cellular signaling pathway that is notable for its dual specificity and its potential as a drug target for a variety of cancer therapies. While much is known about the key role of MEK1 in signaling events, understanding of the structural features that sustain MEK1 function remains limited because of the absence of crystal or NMR structural insights into the phosphorylated and activated form of MEK1. In this work, homology modeling was used to overcome this limitation and generate computational models of the doubly phosphorylated active MEK1 conformation.
View Article and Find Full Text PDF