Graphene oxide (GO) is a promising membrane material for chemical separations, including water treatment. However, GO has often required postsynthesis chemical modifications, such as linkers or intercalants, to improve either the permeability, performance, or mechanical integrity of GO membranes. In this work, we explore two different feedstocks of GO to investigate chemical and physical differences, where we observe up to a 100× discrepancy in the permeability-mass loading trade-off while maintaining nanofiltration capacity.
View Article and Find Full Text PDFNanoparticles are an important class of materials that exhibit special properties arising from their high surface area-to-volume ratio. Scanning transmission electron microscopy (STEM) has played an important role in nanoparticle characterization, owing to its high spatial resolution, which allows direct visualization of composition and morphology with atomic precision. This typically comes at the cost of sample size, potentially limiting the accuracy and relevance of STEM results, as well as the ability to meaningfully track changes in properties that vary spatially.
View Article and Find Full Text PDFNeutron scattering of deuterated plants can provide fundamental insight into the structure of lignocellulosics in plant cell walls and its deconstruction by pretreatment and enzymes. Such plants need to be characterized for any alterations to lignocellulosic structure caused by growth in deuterated media. Here we show that glucose yields from enzymatic hydrolysis at lower enzyme loading were 35% and 30% for untreated deuterated and protiated switchgrass, respectively.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2017
Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of the cathode catalyst layer of membrane electrode assemblies.
View Article and Find Full Text PDF