Publications by authors named "Kimberly Rizzolo"

BthA is a diheme enzyme that is a member of the bacterial cytochrome c peroxidase superfamily, capable of generating a highly unusual Fe(IV)Fe(IV)═O oxidation state, known to be responsible for long-range oxidative chemistry in the enzyme MauG. Here, we show that installing a canonical Met ligand in lieu of the Tyr found at the heme of MauG associated with electron transfer, results in a construct that yields an unusually stable Fe(IV)═O porphyrin at the peroxidatic heme. This state is spontaneously formed at ambient conditions using either molecular O or HO.

View Article and Find Full Text PDF

Bacterial diheme peroxidases represent a diverse enzyme family with functions that range from hydrogen peroxide (HO) reduction to post-translational modifications. By implementing a sequence similarity network (SSN) of the bCCP_MauG superfamily, we present the discovery of a unique diheme peroxidase BthA conserved in all Burkholderia. Using a combination of magnetic resonance, near-IR and Mössbauer spectroscopies and electrochemical methods, we report that BthA is capable of generating a bis-Fe(IV) species previously thought to be a unique feature of the diheme enzyme MauG.

View Article and Find Full Text PDF

Cytochrome c peroxidases (bCcPs) are diheme enzymes required for the reduction of HO to water in bacteria. There are two classes of bCcPs: one is active in the diferric form (constitutively active), and the other requires the reduction of the high-potential heme (H-heme) before catalysis commences (reductively activated) at the low-potential heme (L-heme). To improve our understanding of the mechanisms and heme electronic structures of these different bCcPs, a constitutively active bCcP from Nitrosomonas europaea ( NeCcP) and a reductively activated bCcP from Shewanella oneidensis ( SoCcP) were characterized in both the diferric and semireduced states by electron paramagnetic resonance (EPR), resonance Raman (rRaman), and magnetic circular dichroism (MCD) spectroscopy.

View Article and Find Full Text PDF