Publications by authors named "Kimberly Metera"

Many cellular processes occur out of equilibrium. This includes site-specific unwinding in supercoiled DNA, which may play an important role in gene regulation. Here, we use the Convex Lens-induced Confinement (CLiC) single-molecule microscopy platform to study these processes with high-throughput and without artificial constraints on molecular structures or interactions.

View Article and Find Full Text PDF

DNA unwinding is an important cellular process involved in DNA replication, transcription and repair. In cells, molecular crowding caused by the presence of organelles, proteins, and other molecules affects numerous internal cellular structures. Here, we visualize plasmid DNA unwinding and binding dynamics to an oligonucleotide probe as functions of ionic strength, crowding agent concentration, and crowding agent species using single-molecule CLiC microscopy.

View Article and Find Full Text PDF

Biomolecular condensates formed by liquid-liquid phase separation of proteins and nucleic acids have been recently discovered to be prevalent in biology. These dynamic condensates behave like biochemical reaction vessels, but little is known about their structural organization and biophysical properties, which are likely related to condensate size. Thus, it is critical that we study them on scales found in vivo.

View Article and Find Full Text PDF

Six cyclometalated iridium(III) phenanthroimidazole complexes with different modifications to the imidazole phenanthroline ligand exhibit enhanced luminescence when bound to guanine (G-) quadruplex DNA sequences. The complexes bind with low micromolar affinity to human telomeric and c-myc sequences in a 1:1 complex:quadruplex stoichiometry. Due to the luminescence enhancement upon binding to G-quadruplex DNA, the complexes can be used as selective quadruplex indicators.

View Article and Find Full Text PDF

The electrochemical properties and electrogenerated chemiluminescence (ECL) of an Ir(ppy)2(bpy)(+)-containing ROMP monomer, block copolymer (containing Ir(ppy)2(bpy)(+) complexes, PEG chains, and butyl moieties), and self-assembled micelles were investigated. Following polymerization of the iridium complex, we observed multiple oxidation peaks for the block copolymer in cyclic voltammograms (CV) and differential pulse voltammograms (DPV), suggesting the presence of multiple environments for the iridium complexes along the polymer backbone. The ECL signals from monomer 1 and polymer 2 were reproducible over continuous CV cycles and stable over prolonged potential biases, demonstrating their robustness toward ECL-based detection.

View Article and Find Full Text PDF

Luminescent polymers containing Ir(ppy)(bpy) PF complexes, biocompatible poly(ethylene glycol) (PEG) chains, and biotin moieties were synthesized via ring-opening metathesis polymerization (ROMP). Their self-assembly in water into micelles resulted in an increased quantum yield compared to open polymer chains in acetonitrile, which is likely due to core rigidity and desolvation. Streptavidin coated magnetic beads were employed to analyze the binding ability of these micelles.

View Article and Find Full Text PDF

A current challenge in nanoscience is to achieve controlled organization in three-dimensions, to provide tools for biophysics, molecular sensors, enzymatic cascades, drug delivery, tissue engineering, and device fabrication. DNA displays some of the most predictable and programmable interactions of any molecule, natural or synthetic. As a result, 3D-DNA nanostructures have emerged as promising tools for biology and materials science.

View Article and Find Full Text PDF