Publications by authors named "Kimberly May"

Introduction: The domestic cat (Felis catus) is one of the most common pets. Worldwide, approximately one in five adults are sensitive to cat allergens. The major cat allergen is the secretoglobulin Fel d 1, which is primarily produced in the salivary and sebaceous glands.

View Article and Find Full Text PDF

The oligosaccharyltransferase (OT) complex catalyzes N-glycosylation of nascent secretory polypeptides in the lumen of the endoplasmic reticulum. Despite their importance, little is known about the structure and function of plant OT complexes, mainly due to lack of efficient recombinant protein production systems suitable for studies on large plant protein complexes. Here, we purified Arabidopsis OT complexes using the tandem affinity-tagged OT subunit STAUROSPORINE AND TEMPERATURE SENSITIVE3a (STT3a) expressed by an Arabidopsis protein super-expression platform.

View Article and Find Full Text PDF

OBJECTIVE To compare owner satisfaction between custom-made stifle joint orthoses and tibial plateau leveling osteotomy (TPLO) for the management of medium- and large-breed dogs with cranial cruciate ligament disease (CCLD). DESIGN Owner survey. SAMPLE 819 and 203 owners of dogs with CCLD that were managed with a custom-made stifle joint orthosis or TPLO, respectively.

View Article and Find Full Text PDF

Eukaryotic gene expression is both promoted and inhibited by the reversible phosphorylation of the C-terminal domain of RNA polymerase II (pol II CTD). More than 20 Arabidopsis genes encode CTD phosphatase homologs, including four CTD phosphatase-like (CPL) family members. Although in vitro CTD phosphatase activity has been established for some CPLs, none have been shown to be involved in the phosphoregulation of pol II in vivo.

View Article and Find Full Text PDF

Arabidopsis thaliana CARBOXYL-TERMINAL DOMAIN (CTD) PHOSPHATASE-LIKE 1 (CPL1) regulates plant transcriptional responses to diverse stress signals. Unlike typical CTD phosphatases, CPL1 contains two double-stranded (ds) RNA binding motifs (dsRBMs) at its C-terminus. Some dsRBMs can bind to dsRNA and/or other proteins, but the function of the CPL1 dsRBMs has remained obscure.

View Article and Find Full Text PDF

Confirmation of the correct disulfide linkage and demonstration of the lack of a significant level of scrambled disulfide bonds are critical to ensure the appropriate folding and structure of recombinant monoclonal antibodies. Currently these are typically achieved by carrying out multiple experiments, most commonly via the comparison of the samples before and after reduction by LC-MS and MS/MS. The data are then analyzed by searching across all the possible disulfide linkages manually or with the aid of computer algorithms.

View Article and Find Full Text PDF

N-glycan analysis of recombinant monoclonal antibodies (mAbs) usually requires the removal of oligosaccharides by PNGase F followed by 2-AB labeling, normal phase high performance liquid chromatography (NP-HPLC) separation and fluorescence detection. Alternatively antibodies can be completely digested by trypsin to generate glycopeptides for analysis by liquid chromatography-mass spectrometry (LC-MS). Here, we report the development of a rapid digestion procedure to generate glycopeptides for quantitative LC-MS analysis.

View Article and Find Full Text PDF

Nonenzymatic asparagine (Asn) deamidation is one of the commonly observed posttranslational modifications of proteins. Recent development of several specific analytical methods has allowed for efficient identification and differentiation of the deamidation products (i.e.

View Article and Find Full Text PDF

The sites and levels of Asn deamidation in proteins are often determined by LC-MS analysis of peptides obtained from enzymatic digestion. However, deamidation that occurs during sample preparation steps results in overestimation of the original level of deamidation. The inherent deamidation and those introduced by sample preparation can be differentiated by preparing samples in (18)O water.

View Article and Find Full Text PDF

The existence of multiple variants with differences in either charge, molecular weight or other properties is a common feature of monoclonal antibodies. These charge variants are generally referred to as acidic or basic compared with the main species. The chemical nature of the main species is usually well-understood, but understanding the chemical nature of acidic and basic species, and the differences between all three species, is critical for process development and formulation design.

View Article and Find Full Text PDF

The presence of N-linked oligosaccharides in the CH2 domain has a significant impact on the structure, stability, and biological functions of recombinant monoclonal antibodies. The impact is also highly dependent on the specific oligosaccharide structures. The absence of core-fucose has been demonstrated to result in increased binding affinity to Fcγ receptors and, thus, enhanced antibody-dependent cellular cytotoxicity (ADCC).

View Article and Find Full Text PDF

The disulfide bond structures established decades ago for immunoglobulins have been challenged by findings from extensive characterization of recombinant and human monoclonal IgG antibodies. Non-classical disulfide bond structure was first identified in IgG4 and later in IgG2 antibodies. Although, cysteine residues should be in the disulfide bonded states, free sulfhydryls have been detected in all subclasses of IgG antibodies.

View Article and Find Full Text PDF

The Fc (crystallizable fragment) region of therapeutic antibodies can have an important role in their safety and efficacy. Although much is known about the structure-activity relationship of antibodies and the factors that influence Fc effector functions, a process has not yet been defined to clearly delineate how Fc functionality should be assessed and controlled during antibody development and manufacturing. In this article, we summarize the current knowledge of antibody Fc functionality, provide a strategy for assessing the effector functions of different classes of therapeutic antibodies (including Fc fusion proteins) and propose a path for routine testing and controls for manufacturers of antibody products.

View Article and Find Full Text PDF

Vascular endothelial growth factor (VEGF) is a cytokine and endothelial cell (EC) mitogen that has been studied for its role in angiogenesis of malignant tumors. Elevated quantities of VEGF in the serum and plasma of patients have been correlated with the presence of cancer and metastasis. Since VEGF induces hyperpermeability of EC monolayers, this protein can be detected in vitro with a whole cell-based biosensor.

View Article and Find Full Text PDF

A novel whole-cell potentiometric biosensor for screening of toxins has been developed. The constructed biosensor consists of a confluent monolayer of human umbilical vein endothelial cells (HUVECs) attached to an ion-selective cellulose triacetate (CTA) membrane modified with a covalently attached RGD (arginine-glycine-aspartic acid) peptide sequence. When the HUVECs form a confluent monolayer, ion transport is almost completely inhibited, thereby reducing the response of the ion-selective electrode (ISE).

View Article and Find Full Text PDF

Objective: To evaluate the outcome of urinary bladder marsupialization in male goats.

Study Design: Prospective, experimental study.

Animals: Six healthy mixed-breed male goats.

View Article and Find Full Text PDF

Purpose: Fibromyalgia is a common pain syndrome that is often associated with sleep disturbances. The most characteristic pattern noted on formal sleep study is alpha-wave intrusion on delta-wave sleep. This nonrestorative sleep pattern may be endogenous, or caused by any of a number of sleep disturbances.

View Article and Find Full Text PDF