Publications by authors named "Kimberly Matulef"

Amide-to-ester substitutions are used to study the role of the amide bonds of the protein backbone in protein structure, function, and folding. An amber suppressor tRNA/synthetase pair has been reported for incorporation of p-hydroxy-phenyl-L-lactic acid (HPLA), thereby introducing ester substitution at tyrosine residues. However, the application of this approach was limited due to the low yields of the modified proteins and the high cost of HPLA.

View Article and Find Full Text PDF

C-type inactivation is a process by which ion flux through a voltage-gated K (K) channel is regulated at the selectivity filter. While prior studies have indicated that C-type inactivation involves structural changes at the selectivity filter, the nature of the changes has not been resolved. Here, we report the crystal structure of the K1.

View Article and Find Full Text PDF

Regulation of ion conduction through the pore of a K channel takes place through the coordinated action of the activation gate at the bundle crossing of the inner helices and the inactivation gate located at the selectivity filter. The mechanism of allosteric coupling of these gates is of key interest. Here we report new insights into this allosteric coupling mechanism from studies on a W67F mutant of the KcsA channel.

View Article and Find Full Text PDF

Purpose: The cornea is highly enriched in sensory neurons expressing the thermal TRP channels TRPV1, TRPA1, and TRPM8, and is an accessible tissue for study and experimental manipulation. The aim of this work was to provide a concise characterization of the expression patterns of various TRP channels and vesicular proteins in the mammalian cornea.

Methods: Immunohistochemistry (IHC) was performed using wholemount and cryostat tissue preparations of mouse and monkey corneas.

View Article and Find Full Text PDF

Purpose: The cornea is highly enriched in sensory neurons expressing the thermal TRP channels TRPV1, TRPA1, and TRPM8, and is an accessible tissue for study and experimental manipulation. The aim of this work was to provide a concise characterization of the expression patterns of various TRP channels and vesicular proteins in the mammalian cornea.

Methods: Immunohistochemistry (IHC) was performed using wholemount and cryostat tissue preparations of mouse and monkey corneas.

View Article and Find Full Text PDF

Membrane proteins are universal signal decoders. The helical transmembrane segments of these proteins play central roles in sensory transduction, yet the mechanistic contributions of secondary structure remain unresolved. To investigate the role of main-chain hydrogen bonding on transmembrane function, we encoded amide-to-ester substitutions at sites throughout the S4 voltage-sensing segment of Shaker potassium channels, a region that undergoes rapid, voltage-driven movement during channel gating.

View Article and Find Full Text PDF

Membrane proteins such as ion channels and transporters are frequently homomeric. The homomeric nature raises important questions regarding coupling between subunits and complicates the application of techniques such as FRET or DEER spectroscopy. These challenges can be overcome if the subunits of a homomeric protein can be independently modified for functional or spectroscopic studies.

View Article and Find Full Text PDF

Patch-clamp electrophysiology is the standard technique used for the high-resolution functional measurements on ion channels. While studies using patch clamp are commonly carried out following ion channel expression in a heterologous system such as Xenopus oocytes or tissue culture cells, these studies can also be carried out using ion channels reconstituted into lipid vesicles. In this chapter, we describe the methodology for reconstituting ion channels into liposomes and the procedure for the generation of unilamellar blisters from these liposomes that are suitable for patch clamp.

View Article and Find Full Text PDF

The interplay between the intracellular gate and the selectivity filter underlies the structural basis for gating in potassium ion channels. Using a combination of protein semisynthesis, two-dimensional infrared (2D IR) spectroscopy, and molecular dynamics (MD) simulations, we probe the ion occupancy at the S1 binding site in the constricted state of the selectivity filter of the KcsA channel when the intracellular gate is open and closed. The 2D IR spectra resolve two features, whose relative intensities depend on the state of the intracellular gate.

View Article and Find Full Text PDF

Potassium channels are responsible for the selective permeation of K ions across cell membranes. K ions permeate in single file through the selectivity filter, a narrow pore lined by backbone carbonyls that compose four K binding sites. Here, we report on the two-dimensional infrared (2D IR) spectra of a semisynthetic KcsA channel with site-specific heavy (CO) isotope labels in the selectivity filter.

View Article and Find Full Text PDF

Cell free protein synthesis (CFPS) has emerged as a promising methodology for protein expression. While polypeptide production is very reliable and efficient using CFPS, the correct cotranslational folding of membrane proteins during CFPS is still a challenge. In this contribution, we describe a two-step protocol in which the integral membrane protein is initially expressed by CFPS as a precipitate followed by an in vitro folding procedure using lipid vesicles for converting the protein precipitate to the correctly folded protein.

View Article and Find Full Text PDF

The selectivity filter of K(+) channels contains four ion binding sites (S1-S4) and serves dual functions of discriminating K(+) from Na(+) and acting as a gate during C-type inactivation. C-type inactivation is modulated by ion binding to the selectivity filter sites, but the underlying mechanism is not known. Here we evaluate how the ion binding sites in the selectivity filter of the KcsA channel participate in C-type inactivation and in recovery from inactivation.

View Article and Find Full Text PDF

K(+) channels are membrane proteins that selectively conduct K(+) ions across lipid bilayers. Many voltage-gated K(+) (KV) channels contain two gates, one at the bundle crossing on the intracellular side of the membrane and another in the selectivity filter. The gate at the bundle crossing is responsible for channel opening in response to a voltage stimulus, whereas the gate at the selectivity filter is responsible for C-type inactivation.

View Article and Find Full Text PDF

K(+) channels distinguish K(+) from Na(+) in the selectivity filter, which consists of four ion-binding sites (S1-S4, extracellular to intracellular) that are built mainly using the carbonyl oxygens from the protein backbone. In addition to ionic discrimination, the selectivity filter regulates the flow of ions across the membrane in a gating process referred to as C-type inactivation. A characteristic of C-type inactivation is a dependence on the permeant ion, but the mechanism by which permeant ions modulate C-type inactivation is not known.

View Article and Find Full Text PDF

C-type inactivation of K(+) channels plays a key role in modulating cellular excitability. During C-type inactivation, the selectivity filter of a K(+) channel changes conformation from a conductive to a nonconductive state. Crystal structures of the KcsA channel determined at low K(+) or in the open state revealed a constricted conformation of the selectivity filter, which was proposed to represent the C-type inactivated state.

View Article and Find Full Text PDF
Article Synopsis
  • The chloride channel (CLC) family includes both Cl(-) ion channels and Cl(-)/H(+) antiporters, but the exact mechanism for H(+) and Cl(-) transport in antiporters is still not understood.
  • Research on the novel bacterial protein CLC-ck2 shows it can transport Cl(-), even without key amino acids typically required, and its ion selectivity differs from another CLC protein, CLC-ec1, particularly regarding SO4(2-) interference.
  • Interestingly, CLC-ck2 operates as a Cl(-)/H(+) antiporter despite having a nonpolar residue at a position thought to be essential for H(+) movement, indicating that the
View Article and Find Full Text PDF

The lack of small-molecule inhibitors for anion-selective transporters and channels has impeded our understanding of the complex mechanisms that underlie ion passage. The ubiquitous CLC "Chloride Channel" family represents a unique target for biophysical and biochemical studies because its distinctive protein fold supports both passive chloride channels and secondary-active chloride-proton transporters. Here, we describe the synthesis and characterization of a specific small-molecule inhibitor directed against a CLC antiporter (ClC-ec1).

View Article and Find Full Text PDF

We have recently designed a biochemistry laboratory experiment for the purpose of providing students an advanced experience with enzyme kinetics and the kinetics of binding. Bestatin, a well-known and commercially available general protease inhibitor, is a slow-binding inhibitor of aminopeptidase isolated from Aeromonas proteolytica. The binding is on a timescale slow enough for measurement without the use of a rapid-mixing device.

View Article and Find Full Text PDF

Anion-transport proteins are central to all of physiology, for processes ranging from regulating bone-density, muscle excitability, and blood pressure, to facilitating extreme-acid survival of pathogenic bacteria. 4,4-Diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) has been used as an anion-transport inhibitor for decades. In this study, we demonstrate that polythiourea products derived from DIDS hydrolysis inhibit three different CLC chloride-transport proteins, ClC-ec1, ClC-0, and ClC-Ka, more effectively than DIDS itself.

View Article and Find Full Text PDF

Members of the CLC 'chloride channel' family play vital roles in a wide variety of physiological settings. Research on prokaryotic CLC homologues provided long-anticipated high-resolution structures as well as the unexpected discovery that some CLCs are not chloride channels, but rather are proton-chloride antiporters. Hence, CLCs encompass two functional classes of transport proteins once thought to be fundamentally different from one another.

View Article and Find Full Text PDF

The x-ray structure of the Escherichia coli chloride/proton antiporter ClC-ec1 provides a structural paradigm for the widespread and diverse ClC family of chloride channels and transporters. To maximize the usefulness of this paradigm, it is important to directly relate structure to function via studies of ClC-ec1 itself; however, few functional studies of this protein have been performed. In an endeavor to develop new tools for functional analysis of ClC-ec1, we have discovered that this transporter is inhibited by the stilbenedisulfonate 4,4-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS).

View Article and Find Full Text PDF

Cyclic nucleotide-gated (CNG) ion channels were first discovered in rod photoreceptors, where they are responsible for the primary electrical signal of the photoreceptor in response to light. CNG channels are highly specialized membrane proteins that open an ion-permeable pore across the membrane in response to the direct binding of intracellular cyclic nucleotides. CNG channels have been identified in a number of other tissues, including the brain, where their roles are only beginning to be appreciated.

View Article and Find Full Text PDF

Cyclic nucleotide-gated (CNG) channels comprise four subunits and are activated by the direct binding of cyclic nucleotide to an intracellular domain on each subunit. This ligand binding domain is thought to contain a beta roll followed by two alpha helices, designated the B and C helices. To examine the quaternary structure of CNG channels and how it changes during ion channel gating, we introduced single cysteines along the C helix of each subunit in an otherwise cysteineless channel.

View Article and Find Full Text PDF