The Burkholderia cepacia complex is a group of Gram-negative bacteria that are opportunistic pathogens in immunocompromised individuals, such as those with cystic fibrosis (CF) or chronic granulomatous disease (CGD). Burkholderia are intrinsically resistant to many antibiotics and the lack of antibiotic development necessitates novel therapeutics. Peptide-conjugated phosphorodiamidate morpholino oligomers are antisense molecules that inhibit bacterial mRNA translation.
View Article and Find Full Text PDFClinical trials have demonstrated the benefits of ibuprofen therapy in cystic fibrosis (CF) patients, an effect that is currently attributed to ibuprofen's anti-inflammatory properties. Yet, a few previous reports demonstrated an antimicrobial activity of ibuprofen as well, although none investigated its direct effects on the pathogens found in the CF lung, which is the focus of this work. Determination of ibuprofen's antimicrobial activity against and species strains through measurements of the endpoint number of CFU and growth kinetics showed that ibuprofen reduced the growth rate and bacterial burden of the tested strains in a dose-dependent fashion.
View Article and Find Full Text PDFPolymorphonuclear leukocytes (PMN) from patients with chronic granulomatous disease (CGD) fail to produce microbicidal concentrations of reactive oxygen species (ROS) due to mutations in NOX2. Patients with CGD suffer from severe, life-threatening infections and inflammatory complications. Granulibacter bethesdensis is an emerging Gram-negative pathogen in CGD that resists killing by PMN of CGD patients (CGD PMN) and inhibits PMN apoptosis through unknown mechanisms.
View Article and Find Full Text PDFBackground: Peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs) are synthetic DNA/RNA analogues that silence expression of specific genes. We studied whether PPMOs targeted to essential genes in Acinetobacter lwoffii and Acinetobacter baumannii are active in vitro and in vivo.
Methods: PPMOs were evaluated in vitro using minimum inhibitory concentration (MIC) and viability assays, and in vivo using murine pulmonary infection models with intranasal PPMO treatment.
Selective autophagy functions to specifically degrade cellular cargo tagged by ubiquitination, including bacteria. Strains of the Burkholderia cepacia complex (Bcc) are opportunistic pathogens that cause life-threatening infections in patients with cystic fibrosis (CF) and chronic granulomatous disease (CGD). While there is evidence that defective macrophage autophagy in a mouse model of CF can influence B.
View Article and Find Full Text PDFBackground: Granulibacter bethesdensis is a recently described member of the Acetobacteraceae family that has been isolated from patients with chronic granulomatous disease (CGD). Its pathogenesis, environmental reservoir(s), and incidence of infection among CGD patients and the general population are unknown.
Methods: Detected antigens were identified by mass spectroscopy after 2-dimensional electrophoresis and immunoaffinity chromatography.
Purpose: Adenitis for which no causative organism can be isolated is a common occurrence in patients with chronic granulomatous disease (CGD). Here we identify Acidomonas methanolica as a pathogen associated with adenitis in a patient with CGD.
Methods: The causative pathogen was obtained after prolonged incubation of an excised lymph node in thioglycolate broth.
Acetic acid bacteria were previously considered nonpathogenic in humans. However, over the past decade, five genera of Acetobacteraceae have been isolated from patients with inborn or iatrogenic immunodeficiencies. Here, we describe the first studies of the interactions of the human innate immune system with a member of this bacterial family, Granulibacter bethesdensis, an emerging pathogen in patients with chronic granulomatous disease (CGD).
View Article and Find Full Text PDFChronic granulomatous disease (CGD) is characterized by frequent infections, most of which are curable. Granulibacter bethesdensis is an emerging pathogen in patients with CGD that causes fever and necrotizing lymphadenitis. However, unlike typical CGD organisms, this organism can cause relapse after clinical quiescence.
View Article and Find Full Text PDFBackground: Members of the Burkholderia cepacia complex (Bcc) cause considerable morbidity and mortality in patients with chronic granulomatous disease and cystic fibrosis. Many Bcc strains are antibiotic resistant, which requires the exploration of novel antimicrobial approaches, including antisense technologies such as phosphorodiamidate morpholino oligomers (PMOs).
Methods: Peptide-conjugated PMOs (PPMOs) were developed to target acpP, which encodes an acyl carrier protein (AcpP) that is thought to be essential for growth.
The C-terminal domain (CTD) of bacteriophage Mu immunity repressor (Rep) regulates DNA binding by the N-terminal domain and degradation by ClpXP protease. Five residues at the Rep C terminus (CTD5) can serve as a ClpX recognition motif, but it is dormant unless activated, a state that can be induced by the presence of dominant-negative mutant repressors (Vir). Conversion of Rep to ClpXP-sensitive form was associated with not only increased exposure of CTD5 to solvent but also increased CTD motion or flexibility as measured by fluorescence anisotropy.
View Article and Find Full Text PDFConversion of bacteriophage Mu repressor to ClpXP-sensitive form correlates with induced local flexibility at the ClpX recognition motif located at the C-terminal end. Changing the C-terminal valine to an alanine (RepV196A) caused the degradation tag to be constitutively active like that of mutant repressors called Vir, which have a dominant ClpXP-sensitive conformation. However, unlike Vir, RepV196A was unable to convert wild-type repressor (Rep) to the ClpXP-sensitive form.
View Article and Find Full Text PDFRapid degradation of the bacteriophage Mu immunity repressor can be induced in trans by mutant, protease-hypersensitive repressors (Vir) with an altered C-terminal domain (CTD). Genetic and biochemical analysis established that distinct yet overlapping determinants in the wild-type repressor CTD modulate Vir-induced degradation by Escherichia coli ClpXP protease and DNA binding by the N-terminal DNA-binding domain (DBD). Although deletions of the repressor C-terminus resulted in both resistance to ClpXP protease and suppression of a temperature-sensitive DBD mutation (cts62), some cysteine-replacement mutations in the CTD elicited only one of the two phenotypes.
View Article and Find Full Text PDFDominant negative forms of the phage Mu repressor, including the mutant Vir repressors, are not only rapidly degraded by the ClpXP protease but also promote degradation of the unmodified, wild-type repressor. This trans-targeting of the wild-type repressor depends upon a determinant within its C-terminal domain, which is needed for recognition by ClpX. An environmentally sensitive fluorescent probe (2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid (MIANS)) attached to the C terminus of the full-length repressor indicated that Vir induces the movement of this domain into a more exposed configuration.
View Article and Find Full Text PDF