Publications by authors named "Kimberly Malphrus"

Background: Alzheimer's disease (AD) is neuropathologically characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles. The main protein components of these hallmarks include Aβ40, Aβ42, tau, phosphor-tau, and APOE. We hypothesize that genetic variants influence the levels and solubility of these AD-related proteins in the brain; identifying these may provide key insights into disease pathogenesis.

View Article and Find Full Text PDF

Microglia have fundamental roles in health and disease; however, effects of age, sex, and genetic factors on human microglia have not been fully explored. We applied bulk and single-cell approaches to comprehensively characterize human microglia transcriptomes and their associations with age, sex, and APOE. We identified a novel microglial signature, characterized its expression in bulk tissue and single-cell microglia transcriptomes.

View Article and Find Full Text PDF

Background: African Americans (AA) remain underrepresented in Alzheimer's disease (AD) research, despite the prevalence of AD being double in AA compared to non-Hispanic whites. To address this disparity, our group has established the Florida Consortium for African American Alzheimer's Disease Studies (FCADS), focusing on the identification of genetic risk factors and novel plasma biomarkers.

Method: Utilizing FCADS whole exome sequence (WES) and plasma RNA samples from AD cases (n=151) and cognitively unimpaired (CU) elderly controls (n=269), we have performed differential gene expression (DGE) and expression quantitative trait locus (eQTL) analyses on 50 transcripts measured with a custom nanoString® panel.

View Article and Find Full Text PDF

Background And Objectives: Putative loss-of-function (pLOF) variants that increase Alzheimer disease (AD) risk were identified; however, deep phenotypic characterization of these variants in mutation carriers is limited. We aimed to obtain deep clinical phenotypes of pLOF mutation carriers from a large retrospectively reviewed series.

Methods: Genotypes were determined for 5,353 individuals evaluated at Mayo Clinic for 6 reported pLOF variants (p.

View Article and Find Full Text PDF
Article Synopsis
  • The study identified many differentially expressed genes in Alzheimer's disease (AD) and progressive supranuclear palsy (PSP), showing similar gene expression changes between these two neurodegenerative diseases.
  • Researchers used RNA-Seq data from brain samples to discover that these changes are conserved across different brain regions, indicating a broader impact on related areas.
  • The findings suggest that both AD and PSP share common biological pathways, which could help in developing comprehensive therapies and biomarkers for neurodegenerative diseases.
View Article and Find Full Text PDF

Cerebral amyloid angiopathy (CAA) contributes to accelerated cognitive decline in Alzheimer's disease (AD) dementia and is a common finding at autopsy. The APOEε4 allele and male sex have previously been reported to associate with increased CAA in AD. To inform biomarker and therapeutic target discovery, we aimed to identify additional genetic risk factors and biological pathways involved in this vascular component of AD etiology.

View Article and Find Full Text PDF

Background/objective: The aim of this study was to determine if plasma concentrations of 5 surrogate markers of Alzheimer's disease (AD) pathology and neuroinflammation are associated with disease status in African Americans.

Methods: We evaluated 321 African Americans (159 AD, 162 controls) from the Florida Consortium for African-American Alzheimer's Disease Studies (FCA3DS). Five plasma proteins reflecting AD neuropathology or inflammation (Aβ42, tau, IL6, IL10, TNFα) were tested for associations with AD, age, sex, APOE and MAPT genotypes, and for pairwise correlations.

View Article and Find Full Text PDF

Missense variants ABI3_rs616338-T and PLCG2_rs72824905-G were previously associated with elevated or reduced risk of Alzheimer's disease (AD), respectively. Despite reports of associations with other neurodegenerative diseases, there are few studies of these variants in purely neuropathologically diagnosed cohorts. Further, the effect of these mutations on neurodegenerative disease pathologies is unknown.

View Article and Find Full Text PDF

Large-scale brain bulk-RNAseq studies identified molecular pathways implicated in Alzheimer's disease (AD), however these findings can be confounded by cellular composition changes in bulk-tissue. To identify cell intrinsic gene expression alterations of individual cell types, we designed a bioinformatics pipeline and analyzed three AD and control bulk-RNAseq datasets of temporal and dorsolateral prefrontal cortex from 685 brain samples. We detected cell-proportion changes in AD brains that are robustly replicable across the three independently assessed cohorts.

View Article and Find Full Text PDF

Background: Rare coding variants ABI3_rs616338-T and PLCG2_rs72824905-G were identified as risk or protective factors, respectively, for Alzheimer's disease (AD).

Methods: We tested the association of these variants with five neurodegenerative diseases in Caucasian case-control cohorts: 2742 AD, 231 progressive supranuclear palsy (PSP), 838 Parkinson's disease (PD), 306 dementia with Lewy bodies (DLB) and 150 multiple system atrophy (MSA) vs. 3351 controls; and in an African-American AD case-control cohort (181 AD, 331 controls).

View Article and Find Full Text PDF

Progressive supranuclear palsy (PSP) is a neurodegenerative parkinsonian disorder characterized by tau pathology in neurons and glial cells. Transcriptional regulation has been implicated as a potential mechanism in conferring disease risk and neuropathology for some PSP genetic risk variants. However, the role of transcriptional changes as potential drivers of distinct cell-specific tau lesions has not been explored.

View Article and Find Full Text PDF

Introduction: Comparative transcriptome analyses in Alzheimer's disease (AD) and other neurodegenerative proteinopathies can uncover both shared and distinct disease pathways.

Methods: We analyzed 940 brain transcriptomes including patients with AD, progressive supranuclear palsy (PSP; a primary tauopathy), and control subjects.

Results: We identified transcriptional coexpression networks implicated in myelination, which were lower in PSP temporal cortex (TCX) compared with AD.

View Article and Find Full Text PDF

Objective: To investigate and characterize putative "loss-of-function" (LOF) adenosine triphosphate-binding cassette, subfamily A member 7 () mutations reported to associate with Alzheimer disease (AD) risk.

Methods: We genotyped 6 previously reported putative LOF variants in 1,465 participants with AD, 381 participants with other neuropathologies (non-AD), and 1,043 controls and assessed the overall mutational burden for association with different diagnosis groups. We measured brain ABCA7 protein and messenger RNA (mRNA) levels using Western blot and quantitative PCR, respectively, in 11 carriers of the 3 most common variants, and sequenced all 47 ABCA7 exons in these participants to screen for other coding variants.

View Article and Find Full Text PDF

Introduction: We hypothesized that common Alzheimer's disease (AD)-associated variants within the triggering receptor expressed on myeloid (TREM) gene cluster influence disease through gene expression.

Methods: Expression microarrays on temporal cortex and cerebellum from ∼400 neuropathologically diagnosed subjects and two independent RNAseq replication cohorts were used for expression quantitative trait locus analysis.

Results: A variant within a DNase hypersensitive site 5' of TREM2, rs9357347-C, associates with reduced AD risk and increased TREML1 and TREM2 levels (uncorrected P = 6.

View Article and Find Full Text PDF

Previous genome-wide association studies (GWAS), conducted by our group and others, have identified loci that harbor risk variants for neurodegenerative diseases, including Alzheimer's disease (AD). Human disease variants are enriched for polymorphisms that affect gene expression, including some that are known to associate with expression changes in the brain. Postulating that many variants confer risk to neurodegenerative disease via transcriptional regulatory mechanisms, we have analyzed gene expression levels in the brain tissue of subjects with AD and related diseases.

View Article and Find Full Text PDF

To determine the effects of single nucleotide polymorphisms (SNPs) identified in a genome-wide association study of progressive supranuclear palsy (PSP), we tested their association with brain gene expression, CpG methylation and neuropathology. In 175 autopsied PSP subjects, we performed associations between seven PSP risk variants and temporal cortex levels of 20 genes in-cis, within ±100 kb. Methylation measures were collected using reduced representation bisulfite sequencing in 43 PSP brains.

View Article and Find Full Text PDF

Objective: To investigate the top late-onset Alzheimer disease (LOAD) risk loci detected or confirmed by the International Genomics of Alzheimer's Project for association with brain gene expression levels to identify variants that influence Alzheimer disease (AD) risk through gene expression regulation.

Methods: Expression levels from the cerebellum (CER) and temporal cortex (TCX) were obtained using Illumina whole-genome cDNA-mediated annealing, selection, extension, and ligation assay (WG-DASL) for ∼400 autopsied patients (∼200 with AD and ∼200 with non-AD pathologies). We tested 12 significant LOAD genome-wide association study (GWAS) index single nucleotide polymorphisms (SNPs) for cis association with levels of 34 genes within ±100 kb.

View Article and Find Full Text PDF

Introduction: MAPT encodes for tau, the predominant component of neurofibrillary tangles that are neuropathological hallmarks of Alzheimer's disease (AD). Genetic association of MAPT variants with late-onset AD (LOAD) risk has been inconsistent, although insufficient power and incomplete assessment of MAPT haplotypes may account for this.

Methods: We examined the association of MAPT haplotypes with LOAD risk in more than 20,000 subjects (n-cases = 9,814, n-controls = 11,550) from Mayo Clinic (n-cases = 2,052, n-controls = 3,406) and the Alzheimer's Disease Genetics Consortium (ADGC, n-cases = 7,762, n-controls = 8,144).

View Article and Find Full Text PDF

We tested association of nine late-onset Alzheimer's disease (LOAD) risk variants from genome-wide association studies (GWAS) with memory and progression to mild cognitive impairment (MCI) or LOAD (MCI/LOAD) in older Caucasians, cognitively normal at baseline and longitudinally evaluated at Mayo Clinic Rochester and Jacksonville (n>2000). Each variant was tested both individually and collectively using a weighted risk score. APOE-e4 associated with worse baseline memory and increased decline with highly significant overall effect on memory.

View Article and Find Full Text PDF

Leucine rich repeat transmembrane protein 3 (LRRTM3) is member of a synaptic protein family. LRRTM3 is a nested gene within α-T catenin (CTNNA3) and resides at the linkage peak for late-onset Alzheimer's disease (LOAD) risk and plasma amyloid β (Aβ) levels. In-vitro knock-down of LRRTM3 was previously shown to decrease secreted Aβ, although the mechanism of this is unclear.

View Article and Find Full Text PDF

Background: Genetic variants at the CLU, CR1, and PICALM loci associate with risk for late-onset Alzheimer's disease (LOAD) in genomewide association studies. In this study, our aim was to determine whether the LOAD risk variants at these three loci influence memory endophenotypes in black and white subjects.

Methods: We pursued an association study between single nucleotide polymorphism genotypes at the CLU, CR1, and PICALM loci and memory endophenotypes.

View Article and Find Full Text PDF
Article Synopsis
  • - Recent studies have discovered 9 new genetic risk factors (loci) linked to late-onset Alzheimer’s disease (LOAD) and suggest investigating how these affect gene expression in the brain.
  • - Researchers analyzed gene expression in the cerebellum and temporal cortex of around 400 deceased individuals, testing for associations between the identified risk variants and specific genes located nearby.
  • - The study found that certain genetic variants significantly impacted the expression of key genes related to LOAD, indicating that these eSNPs may help explain the connection between genetic risk factors and Alzheimer’s disease.
View Article and Find Full Text PDF

Genetic variants that modify brain gene expression may also influence risk for human diseases. We measured expression levels of 24,526 transcripts in brain samples from the cerebellum and temporal cortex of autopsied subjects with Alzheimer's disease (AD, cerebellar n=197, temporal cortex n=202) and with other brain pathologies (non-AD, cerebellar n=177, temporal cortex n=197). We conducted an expression genome-wide association study (eGWAS) using 213,528 cisSNPs within ± 100 kb of the tested transcripts.

View Article and Find Full Text PDF

Background: Glutathione S-transferase omega-1 and 2 genes (GSTO1, GSTO2), residing within an Alzheimer and Parkinson disease (AD and PD) linkage region, have diverse functions including mitigation of oxidative stress and may underlie the pathophysiology of both diseases. GSTO polymorphisms were previously reported to associate with risk and age-at-onset of these diseases, although inconsistent follow-up study designs make interpretation of results difficult. We assessed two previously reported SNPs, GSTO1 rs4925 and GSTO2 rs156697, in AD (3,493 ADs vs.

View Article and Find Full Text PDF