Publications by authors named "Kimberly M Kotovic"

Complex cellular functions involve large networks of interactions. Pre-mRNA splicing and transcription are thought to be coupled by the C-terminal domain (CTD) of the large subunit of RNA polymerase II (Pol II). In yeast, the U1 snRNP subunit Prp40 was proposed to mediate cotranscriptional recruitment of early splicing factors through binding of its WW domains to the Pol II CTD.

View Article and Find Full Text PDF

Coupling between transcription and pre-mRNA splicing is a key regulatory mechanism in gene expression. Here, we investigate cotranscriptional spliceosome assembly in yeast, using in vivo crosslinking to determine the distribution of spliceosome components along intron-containing genes. Accumulation of the U1, U2, and U5 small nuclear ribonucleoprotein particles (snRNPs) and the 3' splice site binding factors Mud2p and BBP was detected in patterns indicative of progressive and complete spliceosome assembly; recruitment of the nineteen complex (NTC) component Prp19p suggests that splicing catalysis is also cotranscriptional.

View Article and Find Full Text PDF

Evidence that pre-mRNA processing events are temporally and, in some cases, mechanistically coupled to transcription has led to the proposal that RNA polymerase II (Pol II) recruits pre-mRNA splicing factors to active genes. Here we address two key questions raised by this proposal: (i) whether the U1 snRNP, which binds to the 5' splice site of each intron, is recruited cotranscriptionally in vivo and, (ii) if so, where along the length of active genes the U1 snRNP is concentrated. Using chromatin immunoprecipitation (ChIP) in yeast, we show that elevated levels of the U1 snRNP were specifically detected in gene regions containing introns and downstream of introns but not along the length of intronless genes.

View Article and Find Full Text PDF

Existing evidence indicates that SET2, the histone 3 lysine 36 methyltransferase of Saccharomyces cerevisiae, is a transcriptional repressor. Here we show by five main lines of evidence that SET2 is involved in transcriptional elongation. First, most, if not all, subunits of the RNAP II holoenzyme co-purify with SET2.

View Article and Find Full Text PDF