Publications by authors named "Kimberly M Armantrout"

Here, we assessed the efficacy of a short-course multimodal therapy (enrofloxacin, azithromycin, fenbendazole, and paromomycin) to eliminate common macaque endemic pathogens (EPs) and evaluated its impact on gastrointestinal (GI) microbiota, mucosal integrity, and local and systemic inflammation in sixteen clinically healthy macaques. Treatment combined with expanded practices resulted in successful maintenance of rhesus macaques (RM) free of common EPs, with no evidence of overt microbiota diversity loss or dysbiosis and instead resulted in a more defined luminal microbiota across study subjects. Creation of a GI pathogen free (GPF) status resulted in improved colonic mucosal barrier function (histologically, reduced colonic MPO+, and reduced pan-bacterial 16s rRNA in the MLN), reduced local and systemic innate and adaptive inflammation with reduction of colonic Mx1 and pSTAT1, decreased intermediate (CD14+CD16+) and non-classical monocytes (CD14-CD16+), reduced populations of peripheral dendritic cells, Ki-67+ and CD38+ CD4+ T cells, Ki-67+IgG+, and Ki-67+IgD+ B cells indicating lower levels of background inflammation in the distal descending colon, draining mesenteric lymph nodes, and systemically in peripheral blood, spleen, and axillary lymph nodes.

View Article and Find Full Text PDF

Nonbronchoscopic bronchoalveolar lavage (NB-BAL) is a minimally invasive diagnostic and research tool used to sample the cells of lower airways and alveoli without using a bronchoscope. Our study compared NB-BAL and bronchoscopic bronchoalveolar lavage (B-BAL) in terms of costs, cell yields, and the number of post-procedural complications in macaques. We also analyzed procedure times, BAL fluid volume yields, and vital signs in a subset of animals that underwent NB-BAL.

View Article and Find Full Text PDF