As with every new technology, safety demonstration is a critical component of bringing products to market and gaining public acceptance for cultured meat and seafood. This manuscript develops research priorities from the findings of a series of interviews and workshops with governmental scientists and regulators from food safety agencies in fifteen jurisdictions globally. The interviews and workshops aimed to identify the key safety questions and priority areas of research.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
November 2021
Cell-cultured meat and seafood offer a sustainable opportunity to meet the world's increasing demand for protein in a climate-changed world. A responsible, data-driven approach to assess and demonstrate safety of cell-cultured meat and seafood can support consumer acceptance and help fully realize the potential of these products. As an initial step toward a thorough demonstration of safety, this review identifies hazards that could be introduced during manufacturing, evaluates applicability of existing safety assessment approaches, and highlights research priorities that could support safe commercialization.
View Article and Find Full Text PDFAn optimal methodology for locating and tracking cellulose nanofibers (CNFs) in vitro and in vivo is crucial to evaluate the environmental health and safety properties of these nanomaterials. Here, we report the use of a new boron-dipyrromethene (BODIPY) reactive fluorescent probe, meso-DichlorotriazineEthyl BODIPY (mDTEB), tailor-made for labeling CNFs used in simulated or in vivo ingestion exposure studies. Time-correlated single photon counting (TCSPC) fluorescence lifetime imaging microscopy (FLIM) was used to confirm covalent attachment and purity of mDTEB-labeled CNFs.
View Article and Find Full Text PDFCellulose nanocrystals (CNCs) are a next-generation cellulose product with many unique properties including applications in the food industry as a food additive, food coating, and in food-contact packaging material. While CNC is anticipated to be safe due to its similarity to the many forms of cellulose currently used as food additives, special consideration is given to it as it is the first manufactured form of cellulose that is nanoscale in both length and width. A proactive approach to safety has been adopted by manufacturers to demonstrate CNC safety toward responsible commercialization.
View Article and Find Full Text PDFNovel forms of fibrillated cellulose offer improved attributes for use in foods. Conventional cellulose and many of its derivatives are already widely used as food additives and are authorized as safe for use in foods in many countries. However, novel forms have not yet been thoroughly investigated using standardized testing methods.
View Article and Find Full Text PDFCellulose nanomaterials (CNs) are emerging advanced materials with many unique properties and growing commercial significance. A life-cycle risk assessment and environmental health and safety roadmap identified potential risks from inhalation of powdered CNs in the workplace as a key gap in our understanding of safety and recommended addressing this data gap to advance the safe and successful commercialization of these materials. Here, we (i) summarize the currently available published literature for its contribution to our current understanding of CN inhalation hazard and (ii) evaluate the quality of the studies for risk assessment purposes using published study evaluation tools for nanomaterials to assess the weight of evidence provided.
View Article and Find Full Text PDFA new family of materials comprised of cellulose, cellulose nanomaterials (CNMs), having properties and functionalities distinct from molecular cellulose and wood pulp, is being developed for applications that were once thought impossible for cellulosic materials. Commercialization, paralleled by research in this field, is fueled by the unique combination of characteristics, such as high on-axis stiffness, sustainability, scalability, and mechanical reinforcement of a wide variety of materials, leading to their utility across a broad spectrum of high-performance material applications. However, with this exponential growth in interest/activity, the development of measurement protocols necessary for consistent, reliable and accurate materials characterization has been outpaced.
View Article and Find Full Text PDFThe Society for Risk Analysis (SRA) has a history of bringing thought leadership to topics of emerging risk. In September 2014, the SRA Emerging Nanoscale Materials Specialty Group convened an international workshop to examine the use of alternative testing strategies (ATS) for manufactured nanomaterials (NM) from a risk analysis perspective. Experts in NM environmental health and safety, human health, ecotoxicology, regulatory compliance, risk analysis, and ATS evaluated and discussed the state of the science for in vitro and other alternatives to traditional toxicology testing for NM.
View Article and Find Full Text PDFThe evaluation of engineered nanomaterial safety has been hindered by conflicting reports demonstrating differential degrees of toxicity with the same nanoparticles. The unique properties of these materials increase the likelihood that they will interfere with analytical techniques, which may contribute to this phenomenon. We tested the potential for: 1) nanoparticle intrinsic fluorescence/absorbance, 2) interactions between nanoparticles and assay components, and 3) the effects of adding both nanoparticles and analytes to an assay, to interfere with the accurate assessment of toxicity.
View Article and Find Full Text PDFAquatic organisms are susceptible to waterborne nanoparticles (NP) and there is only limited understanding of the mechanisms by which these emerging contaminants may affect biological processes. This study used silicon (nSi), cadmium selenide (nCdSe), silver (nAg) and zinc NPs (nZnO) as well as single-walled carbon nanotubes (SWCNT) to assess NP effects on zebrafish (Danio rerio) hatch. Exposure of 10 mg/L nAg and nCdSe delayed zebrafish hatch and 100 mg/L of nCdSe as well as 10 and 100 mg/L of uncoated nZnO completely inhibited hatch and the embryos died within the chorion.
View Article and Find Full Text PDFThe silver ion (Ag(+)) is well documented to be a potent inhibitor of sodium (Na(+)) transport in fish. However, it has not been determined whether silver nanoparticles (Ag NPs) elicit this same effect and, if so, if the NP itself and/or the dissociation of ionic Ag(+) causes this effect. Citrate-capped Ag NPs were dialyzed in water to determine the dissolution rate of ionic Ag(+) from the NPs and the maximum concentration of free Ag(+) released from the NPs was used as a paired Ag(+) control to distinguish NP effects from ionic metal effects.
View Article and Find Full Text PDFThe toxicity of needle-(nHA-ND) and rod-shaped (nHA-RD) hydroxyapatite (HA) nanoparticles is evaluated in vitro on catfish B-cells (3B11) and catfish T-cells (28s.3) and in vivo on zebrafish embryos to determine if biological effects are similar to the effects seen in mammalian in vitro systems. Neither nHA-ND nor nHA-RD affect cell viability at concentrations of 10 to 300 μg mL(-1) .
View Article and Find Full Text PDF