Ann Clin Transl Neurol
July 2019
This study used C-PBR28 positron emission tomography (PET) imaging to determine whether levels of 18-kDa translocator protein (TSPO), an inflammation-specific biomarker, are increased in frontotemporal lobar degeneration (FTLD) patients. C-PBR28, F-FDG, and C-PIB brain PET scans, as well as magnetic resonance imaging (MRI), were conducted in four FTLD patients and 22 healthy controls. C-PBR28 scans revealed that all FTLD patients showed increased TSPO binding versus controls.
View Article and Find Full Text PDFCyclooxygenase 2 (COX-2) is an inducible enzyme responsible for the conversion of arachidonic acid into the prostaglandins, PGG2 and PGH2. Expression of this enzyme increases in inflammation. Therefore, the development of probes for imaging COX-2 with positron emission tomography (PET) has gained interest because they could be useful for the study of inflammation in vivo, and for aiding anti-inflammatory drug development targeting COX-2.
View Article and Find Full Text PDFIn our preceding paper (Part 1), we identified three 1,5-bis-diaryl-1,2,4-triazole-based compounds that merited evaluation as potential positron emission tomography (PET) radioligands for selectively imaging cyclooxygenase-1 (COX-1) in monkey and human brain, namely, 1,5-bis(4-methoxyphenyl)-3-(alkoxy)-1 H-1,2,4-triazoles bearing a 3-methoxy (PS1), a 3-(2,2,2-trifluoroethoxy) (PS13), or a 3-fluoromethoxy substituent (PS2). PS1 and PS13 were labeled from phenol precursors by O-C-methylation with [C]iodomethane and PS2 by O-F-fluoroalkylation with [H,F]fluorobromomethane. Here, we evaluated these PET radioligands in monkey.
View Article and Find Full Text PDFCyclooxygenase-1 (COX-1) is a key enzyme in the biosynthesis of proinflammatory thromboxanes and prostaglandins and is found in glial and neuronal cells within brain. COX-1 expression is implicated in numerous neuroinflammatory states. We aim to find a direct-acting positron emission tomography (PET) radioligand for imaging COX-1 in human brain as a potential biomarker of neuroinflammation and for serving as a tool in drug development.
View Article and Find Full Text PDFWe sought to determine whether patients with posterior cortical atrophy (PCA) demonstrate a pattern of binding to translocator protein 18 kDa, a marker of microglial activation, that is distinct from that in patients with amnestic presentation of Alzheimer's disease (AD). Eleven PCA patients, 11 amnestic AD patients, and 15 age-matched controls underwent positron emission tomography with C-PBR28 to measure translocator protein 18 kDa. PCA patients showed greater C-PBR28 binding than controls in occipital, posterior parietal, and temporal regions.
View Article and Find Full Text PDFModifications to an N-methyl-(quinolin-4-yl)oxypropanamide scaffold were explored to discover leads for developing new radioligands for PET imaging of brain TSPO (translocator protein), a biomarker of neuroinflammation. Whereas contraction of the quinolinyl portion of the scaffold or cyclization of the tertiary amido group abolished high TSPO affinity, insertion of an extra nitrogen atom into the 2-arylquinolinyl portion was effective in retaining sub-nanomolar affinity for rat TSPO, while also decreasing lipophilicity to within the moderate range deemed preferable for a PET radioligand. Replacement of a phenyl group on the amido nitrogen with an isopropyl group was similarly effective.
View Article and Find Full Text PDFThis longitudinal study sought to determine whether the 18 kDa translocator protein (TSPO), a marker of neuroinflammation, increases over time in Alzheimer's disease. Positron emission tomography imaging with the TSPO radioligand (11)C-PBR28 was performed at baseline and after a median follow-up of 2.7 years in 14 amyloid-positive patients and 8 amyloid-negative controls.
View Article and Find Full Text PDFIntroduction: Metabotropic glutamate subtype receptor 1 (mGluR1) is implicated in several neuropsychiatric disorders and is a target for drug development. [(18)F]FIMX ([(18)F]4-fluoro--N-methyl-N--(4-(6-(methylamino)pyrimidin-4-yl)thiazol-2-yl)benzamide) is an effective radioligand for imaging brain mGluR1 with PET. A similarly effective radioligand with a shorter half-life would usefully allow PET studies of mGluR1 at baseline and after pharmacological or other challenge on the same day.
View Article and Find Full Text PDFImportance: Neuroinflammation may play a role in epilepsy. Translocator protein 18 kDa (TSPO), a biomarker of neuroinflammation, is overexpressed on activated microglia and reactive astrocytes. A preliminary positron emission tomographic (PET) imaging study using carbon 11 ([11C])-labeled PBR28 in patients with temporal lobe epilepsy (TLE) found increased TSPO ipsilateral to seizure foci.
View Article and Find Full Text PDFThe imaging of translocator 18 kDa protein (TSPO) in living human brain with radioligands by positron emission tomography (PET) has become an important means for the study of neuroinflammatory conditions occurring in several neuropsychiatric disorders. The widely used prototypical PET radioligand [(11)C](R)-PK 11195 ([(11)C](R)-1; [N-methyl-(11)C](R)-N-sec-butyl-1-(2-chlorophenyl)-N-methylisoquinoline-3-carboxamide) gives a low PET signal and is difficult to quantify, whereas later generation radioligands have binding sensitivity to a human single nucleotide polymorphism (SNP) rs6971, which imposes limitations on their utility for comparative quantitative PET studies of normal and diseased subjects. Recently, azaisosteres of 1 have been developed with improved drug-like properties, including enhanced TSPO affinity accompanied by moderated lipophilicity.
View Article and Find Full Text PDFWe recently developed a novel cannabinoid subtype-1 (CB1) receptor radioligand (11)C-SD5024 for brain imaging. This study aimed to evaluate (11)C-SD5024 both in vitro and in vivo and compare it with the other CB1 receptor ligands previously used in humans, i.e.
View Article and Find Full Text PDFNeuroinflammation is a pathological hallmark of Alzheimer's disease, but its role in cognitive impairment and its course of development during the disease are largely unknown. To address these unknowns, we used positron emission tomography with (11)C-PBR28 to measure translocator protein 18 kDa (TSPO), a putative biomarker for inflammation. Patients with Alzheimer's disease, patients with mild cognitive impairment and older control subjects were also scanned with (11)C-Pittsburgh Compound B to measure amyloid burden.
View Article and Find Full Text PDFBackground: Fragile X syndrome (FXS) is a common inherited form of intellectual disability caused by loss of function of the fragile X mental retardation protein. Recent animal studies suggest that upregulated downstream signaling by metabotropic glutamate receptor 5 (mGluR5) might be an important mechanism for cognitive and behavioral abnormalities associated with FXS. However, mGluR5 density in human FXS remains unknown.
View Article and Find Full Text PDFSecond-generation radioligands for translocator protein (TSPO), an inflammation marker, are confounded by the codominant rs6971 polymorphism that affects binding affinity. The resulting three groups are homozygous for high-affinity state (HH), homozygous for low-affinity state (LL), or heterozygous (HL). We tested if in vitro binding to leukocytes distinguished TSPO genotypes and if genotype could affect clinical studies using the TSPO radioligand [(11)C]PBR28.
View Article and Find Full Text PDFThis study sought to determine whether cannabinoid-1 (CB(1)) receptor binding was altered in the postmortem dorsolateral prefrontal cortex (DLPFC) of individuals with schizophrenia (schizophrenia; n=47) compared to controls (n=43). The CB(1) receptor inverse agonist radioligand [(3)H]MePPEP was used to measure specific binding to CB(1) receptors. The specific binding of [(3)H]MePPEP to CB(1) receptors was 20% higher in patients with schizophrenia than in controls.
View Article and Find Full Text PDFA known chemotype of H(3) receptor ligand was explored for development of a radioligand for imaging brain histamine subtype 3 (H(3)) receptors in vivo with positron emission tomography (PET), namely nonimidazole 2-aminoethylbenzofurans, represented by the compound (R)-(2-(2-(2-methylpyrrolidin-1-yl)ethyl)benzofuran-5-yl)(4-fluorophenyl)methanone (9). Compound 9 was labeled with fluorine-18 (t(1/2) = 109.7 min) in high specific activity by treating the prepared nitro analogue (12) with cyclotron-produced [(18)F]fluoride ion.
View Article and Find Full Text PDFDrug interactions with plasma proteins influence their pharmacokinetics and pharmacodynamics. We aimed to test whether a strong quantitative relationship exists between plasma free fraction (f(P) ) and lipophilicity for low molecular weight nonacidic drug-like compounds. We measured the n-octanol-buffer distribution coefficients at pH 7.
View Article and Find Full Text PDFUnlabelled: Ten percent of humans lack specific binding of [(11)C]PBR28 to 18 kDa translocator protein (TSPO), a biomarker for inflammation. "Non-binders" have not been reported using another TSPO radioligand, [(11)C]-(R)-PK 11195, despite its use for more than two decades. This study asked two questions: (1) What is the cause of non-binding to PBR28? and (2) Why has this phenomenon not been reported using [(11)C]-(R)-PK 11195?
Methods: Five binders and five non-binders received whole-body imaging with both [(11)C]-(R)-PK 11195 and [(11)C]PBR28.
This study examined the effects of five CLA isomers and the non-conjugated LA on nitric oxide (NO) production, an important modulator of vasodilation, inflammation, and cytotoxicity. Bovine aortic endothelial cells (BAECs) were pretreated with pure CLAs (c9, c11-, c9, t11-, t9, t11-, t10, c12-, c11, c13-CLA) and the non-conjugated c9, c12-analog, then stimulated by the ionophore A23187 followed by fluorescence monitoring of NO production. CLAs (5 microM) decreased NO formation in the range of 20-40% relative to non-fatty acid-treated controls with the t9, t11- and t10, c12-CLAs being the most effective.
View Article and Find Full Text PDF