We study the adiabatic connection that has as weak-coupling expansion the Møller-Plesset perturbation series, generalizing to the open-shell case previous closed-shell results for the large-coupling limit. We first focus on the hydrogen atom with fractional spins, providing results along the adiabatic connection from small to large coupling strengths. We reveal an intriguing phase diagram and an equation for the large-coupling leading order that has closed-form solutions for specific choices of its relevant quantum numbers.
View Article and Find Full Text PDFWe numerically study the strong-interaction limit of the exchange-correlation functional for neutral atoms and Bohr atoms as the number of electrons increases. Using a compact representation, we analyze the second-order gradient expansion, comparing it with the one for exchange (weak interaction limit). The two gradient expansions, at strong and weak interaction, turn out to be very similar in magnitude but with opposite signs.
View Article and Find Full Text PDFNoncovalent interactions (NCIs) play a crucial role in biology, chemistry, material science, and everything in between. To improve pure quantum-chemical simulations of NCIs, we propose a methodology for constructing approximate correlation energies by combining an interpolation along the Møller-Plesset adiabatic connection (MP AC) with a regularization and spin-scaling strategy applied to MP2 correlation energies. This combination yields κ-SPL2, which exhibits superior accuracy for NCIs compared to any of the individual strategies.
View Article and Find Full Text PDFThe adiabatic connection that has, as weak-interaction expansion, the Møller-Plesset perturbation series has been recently shown to have a large coupling-strength expansion, in terms of functionals of the Hartree-Fock density with a clear physical meaning. In this work, we accurately evaluate these density functionals and we extract second-order gradient coefficients from the data for neutral atoms, following ideas similar to the ones used in the literature for exchange, with some modifications. These new gradient expansions will be the key ingredient for performing interpolations that have already been shown to reduce dramatically MP2 errors for large noncovalent complexes.
View Article and Find Full Text PDFGiven the omnipresence of noncovalent interactions (NCIs), their accurate simulations are of crucial importance across various scientific disciplines. Here we construct accurate models for the description of NCIs by an interpolation along the Møller-Plesset adiabatic connection (MP AC). Our interpolation approximates the correlation energy, by recovering MP2 at small coupling strengths and the correct large-coupling strength expansion of the MP AC, recently shown to be a functional of the Hartree-Fock density.
View Article and Find Full Text PDFWe have studied the correlation potentials produced by various adiabatic connection models (ACMs) for several atoms and molecules. The results have been compared to accurate reference potentials (coupled cluster and quantum Monte Carlo results) as well as to state-of-the-art ab initio DFT approaches. We have found that all the ACMs yield correlation potentials that exhibit a correct behavior, quite resembling scaled second-order Görling-Levy (GL2) potentials and including most of the physically meaningful features of the accurate reference data.
View Article and Find Full Text PDF