Environ Sci Technol
October 2024
Current understanding of atmospheric transport of semivolatile organic contaminants (SVOCs) in alpine areas is limited due to complex meteorology and topography. Salt Lake City, Utah borders protected wilderness areas in the Wasatch Mountains, exhibiting a useful model system in which an urban source of SVOCs, including polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), is located directly adjacent to an alpine sink. Our objective was to investigate the impacts of topographical features on the transport and deposition of SVOCs across an urban-alpine boundary.
View Article and Find Full Text PDFBackground: The Centers for Disease Control and Prevention (CDC) bottle bioassay is a commonly used susceptibility test for measuring insect response to insecticide exposure. However, inconsistencies and high variability in insect response when conducting CDC bottle bioassays have been reported in previous publications. We hypothesized that the CDC bottle bioassay results may be compromised when expected and actual insecticide concentrations in the bottles are not equivalent and that inadequate bottle cleaning and/or loss during insecticide introduction and bottle storage steps could be responsible.
View Article and Find Full Text PDFChlorinated paraffins (CPs), particularly short-chain CPs (SCCPs), have been reported in human blood with high detection frequency and often high variation among individuals. However, factors associated with and their contributions to inter-individual variability in SCCP concentrations in human blood have not been assessed. In this study, we first measured SCCP concentrations in 57 human blood samples collected from individuals living in the same vicinity in China.
View Article and Find Full Text PDFAs demand for sustainable marine aquaculture (mariculture) and marine food supply surges worldwide, there is a growing need for new tools to assess mariculture impacts on local ecosystems, including the cycling of toxic organic contaminants. With this in mind, we developed the Contaminant Fate in Aquaculture-Modified Ecosystems (CFAME) model. The current model was designed to explore the fate of mariculture-derived organic contaminants in the Marlborough Sounds, New Zealand, known for its Chinook salmon farming industry.
View Article and Find Full Text PDFLeaf-air partition coefficient () values are needed to understand and predict pesticide volatilization and persistence in agroecosystems. The objectives of this work were to measure values and foliar penetration for the insecticide chlorpyrifos (as an active ingredient alone and in a pesticide formulation) on alfalfa (lucerne) leaves at a range of temperatures and relative humidities and when using leaves collected in different summer months. values were measured using a solid-phase fugacity meter.
View Article and Find Full Text PDFOrganic matter from salmon farms has been shown to be assimilated by soft sediment and rocky reef communities within the ecological footprint of salmon farms. Given these findings, another question arises - What other chemicals in salmon feed may be assimilated into wild communities via organic waste from salmon farms? Here we measured a suite of organic contaminants in salmon feed, in organisms used in a controlled feeding experiment, and in reef species collected within the depositional footprint of salmon farms. Gas Chromatography-Tandem Mass Spectrometry was used to quantify trace concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and current-use (CPUs) and historic-use pesticides (HUPs) in salmon feed imported to New Zealand.
View Article and Find Full Text PDFThis study provides guidance on using polyurethane foam-based passive air samplers (PUF-PASs) for atmospheric nonane chlorinated paraffins (C-CPs) and short-chain CPs (SCCPs) and reports SCCP concentrations in air in the Greater Toronto Area (GTA), Canada. We estimated the partition coefficients between PUF and air () and between octanol and air () for C-CP and SCCP congeners using the COSMO-RS method, so that PUF disk uptake profiles for each formula group could be calculated. We then measured SCCP concentrations in PUF disk samples collected from distinct source sectors in urban air across the GTA.
View Article and Find Full Text PDFSustainable management of freshwater and pesticide use is essential for mitigating the impacts of intensive agriculture in the context of a changing climate. To better understand how climate change will affect the vulnerability of freshwater ecosystems to chemical pollutants, more empirical evidence is needed on the combined effects of climatic and chemical stressors in environmentally realistic conditions. Our experiment provides the first empirical evaluation of stream macroinvertebrate community dynamics in response to one of the world's most widely used insecticides, imidacloprid, and increased water temperature.
View Article and Find Full Text PDFPolychlorinated naphthalene (PCN) concentrations in the soil at an e-waste recycling area in Guiyu, China, were measured and the associated human cancer risk due to e-waste-related exposures was investigated. We quantified PCNs in the agricultural soil and used these concentrations with predictive equations to calculate theoretical concentrations in outdoor air. We then calculated theoretical concentrations in indoor air using an attenuation factor and in the local diet using previously published models for contaminant uptake in plants and fruits.
View Article and Find Full Text PDFPesticide dissipation from plant surfaces depends on a variety of factors including meteorological conditions, the pesticide's physicochemical properties, and plant characteristics. Models already exist for describing pesticide behavior in agriculture fields; however, they do not account for pesticide-specific, condition-specific foliar photodegradation and the importance of this component in such models has not yet been investigated. We describe here the Pesticide Dissipation from Agricultural Land (PeDAL) model, which combines (a) multiphase partitioning to predict volatilization, (b) a new kinetics module for predicting photodegradation on leaf surfaces under varying light conditions based on location and timing, and (c) a generic foliar penetration component.
View Article and Find Full Text PDFLocal differences in trophic structure and composition of organic matter subsidies can influence the capacity of soft sediment communities to assimilate recycled organic matter from processes such as salmon farm enrichment. The present study combines biochemical analysis with biomass density information on soft sediment taxa collected within the depositional footprint of salmon farms and at reference sites in the Marlborough Sounds, New Zealand. Distinct biochemical signatures confirmed that the flux of organic matter from salmon farms was an important subsidy for soft sediment communities.
View Article and Find Full Text PDFThe global intensification of agriculture has resulted in pesticides playing an increasingly important role as anthropogenic stressors and drivers of environmental change. There is also a growing need to determine if other environmental stressors, especially those predicted to worsen with climate change, interact with pesticides to alter their effects on non-target biota. Two such stressors are increased extreme temperature events and periods of food limitation.
View Article and Find Full Text PDFContamination of the environment with toxic chemicals such as pesticides has become a global problem. Understanding the role of chemical contaminants as stressors in ecological systems is therefore an important research need in the 21st century. In surface freshwaters, mixtures of neonicotinoid insecticides are being detected around the world as more monitoring data become available.
View Article and Find Full Text PDFShort-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) were measured in tree bark samples. These samples were collected around a chemical industrial park containing several chlorinated paraffin (CP) production plants, in a nearby city (Zhengzhou), and along a transect between the industrial park and city. Theoretical air concentrations were back-calculated from concentrations in bark using a predictive equation for estimating equilibrium bark-air partition coefficients.
View Article and Find Full Text PDFVarious techniques have been evaluated for the extraction and cleanup of pesticides from environmental samples. In this work, a Selective Pressurized Liquid Extraction (SPLE) method for pesticides was developed using a Thermo Fisher Scientific Accelerated Solvent Extraction (ASE) system. This instrument was compared to the newly introduced (2017) extraction instrument, the Energized Dispersive Guided Extraction (EDGE) system, which combines Pressurized Liquid Extraction (PLE) and dispersive Solid Phase Extraction (dSPE).
View Article and Find Full Text PDFA solid-phase fugacity meter was used to measure the soil-air partition coefficients of three semivolatile pesticides (chlorpyrifos, pyrimethanil, and trifluralin) in the absence of additional adjuvants (), as part of commercial formulations (), and as formulation mixtures with an additional spray adjuvant added (). Chlorpyrifos values were also measured over 15-30 °C, allowing for the change in internal energy of the phase transfer reaction (Δ) to be calculated and compared to the Δ for from the literature. Measured values were then used as input parameters in a pesticide volatilization model to understand how their variability affects pesticide volatilization rates under different conditions.
View Article and Find Full Text PDFThe Pesticide Loss via Volatilization model was developed to predict and understand pesticide volatilization rates from a planted agricultural field. The model allows the user to adjust the properties of the pesticide, various soil and plant descriptors, and climatic conditions. A useful output from the model is the 24 h cumulative percentage volatilization (CPV) loss.
View Article and Find Full Text PDFA field study was conducted to further our understanding about the fate and transport of the organophosphate insecticide, chlorpyrifos, and its degradation product, chlorpyrifos oxon. Leaf, soil and air sampling was conducted for 21 days after chlorpyrifos application to a field of purple tansy (Phacelia tanacetifolia). Air samples were collected using a high-volume air sampler (HVAS) and seven battery-operated medium-volume active air samplers placed around the field and on a 500-m transect extending away from the field.
View Article and Find Full Text PDFPhthalate esters (PAEs) have been shown to be ubiquitous in abiotic and biotic environmental compartments; however, information about bioaccumulation behavior and human exposure, both via environmental exposure and the diet, are limited. Herein, we report the concentrations and composition profiles of phthalate esters (PAEs) in biological samples, river water, indoor air, and outdoor air samples collected from an agricultural site in western China. Dibutyl phthalate (DNBP) occupied a relatively high abundance in biological samples, discrepant with the environmental samples in which di-(2-ethylhexyl) phthalate (DEHP) was the dominant congener.
View Article and Find Full Text PDFNew Zealand uses more than a ton of pesticides each year; many of these are mobile, relatively persistent, and can make their way into waterways. While considerable effort goes into monitoring nutrients in agricultural streams and programs exist to monitor pesticides in groundwater, very little is known about pesticide detection frequencies, concentrations, or their potential impacts in New Zealand streams. We used the 'Polar Organic Chemical Integrative Sampler' (POCIS) approach and grab water sampling to survey pesticide concentrations in 36 agricultural streams in Waikato, Canterbury, Otago and Southland during a period of stable stream flows in Austral summer 2017/18.
View Article and Find Full Text PDFNeonicotinoid insecticides have been shown to have high chronic toxicity relative to acute toxicity, and therefore short-term toxicity tests ≤96 h in duration may underestimate their environmental risks. Among nontarget aquatic invertebrates, insects of the orders Diptera and Ephemeroptera have been found to be the most sensitive to neonicotinoids. To undertake a more accurate assessment of the risks posed by neonicotinoids to freshwater ecosystems, more data are needed from long-term tests employing the most sensitive taxa.
View Article and Find Full Text PDFEnvironmental challenges persist across the world, including the Australasian region of Oceania, where biodiversity hotspots and unique ecosystems such as the Great Barrier Reef are common. These systems are routinely affected by multiple stressors from anthropogenic activities, and increasingly influenced by global megatrends (e.g.
View Article and Find Full Text PDFMelting glaciers release previously ice-entrapped chemicals to the surrounding environment. As glacier melting accelerates under future climate warming, chemical release may also increase. This study investigated the behavior of semivolatile pesticides over the course of one year and predicted their behavior under two future climate change scenarios.
View Article and Find Full Text PDFConcentrations of halogenated pesticides in freshwater fish can be affected by age, size, trophic position, and exposure history. Exposure history may vary for individual fish caught at a single location due to different life histories, e.g.
View Article and Find Full Text PDF