Publications by authors named "Kimberly H Wood"

Background: The glymphatic clearance pathway is a waste clearance system that allows for removal of soluble proteins such as amyloid β (Aβ) from the brain. Higher Aβ levels are associated with cognitive dysfunction in Parkinson's disease (PD). Diffusion tensor imaging-along the perivascular space (DTI-ALPS) is an imaging measure proposed to indirectly measure glymphatic function.

View Article and Find Full Text PDF

Introduction: Parkinson's disease (PD) patients with REM sleep behavior disorder (RBD) are at greater risk for cognitive decline and RBD has been associated with alterations in sleep-related EEG oscillations. This study evaluates differences in sleep quantitative EEG (qEEG) and cognition in PD participants with (PD-RBD) and without RBD (PD-no-RBD).

Methods: In this cross-sectional study, polysomnography (PSG)-derived qEEG and a comprehensive level II neuropsychological assessment were compared between PD-RBD ( = 21) and PD-no-RBD ( = 31).

View Article and Find Full Text PDF

Background: Sleep disorders are common in Parkinson's disease (PD) and include alterations in sleep-related EEG oscillations.

Objective: This case-control study tested the hypothesis that patients with PD would have a lower density of Scalp-Slow Wave (SW) oscillations and higher slow-to-fast frequencies ratio in rapid eye movement (REM) sleep than non-PD controls. Other sleep-related quantitative EEG (qEEG) features were also examined, including SW morphology, sleep spindles, and Scalp-SW spindle phase-amplitude coupling.

View Article and Find Full Text PDF

Background: In a randomized, controlled trial, we showed that high-intensity rehabilitation, combining resistance training and body-weight interval training, improves sleep efficiency in Parkinson's disease (PD). Quantitative sleep EEG (sleep qEEG) features, including sleep spindles, are altered in aging and in neurodegenerative disease.

Objective: The objective of this post-hoc analysis was to determine the effects of exercise, in comparison to a sleep hygiene, no-exercise control group, on the quantitative characteristics of sleep spindle morphology in PD.

View Article and Find Full Text PDF

The prefrontal cortex (PFC), hippocampus, and amygdala play an important role in emotional health. However, adverse life events (e.g.

View Article and Find Full Text PDF

Background: Cognitive impairment is common and disabling in Parkinson's disease (PD). Cognitive testing can be time consuming in the clinical setting. One rapid test to detect cognitive impairment in non-PD populations is the Clock Drawing Test (CDT), which calls upon the brain's executive and visuospatial abilities to draw a clock designating a certain time.

View Article and Find Full Text PDF

Background: Cognitive and sleep dysfunction are common non-motor symptoms in Parkinson's disease (PD).

Objective: Determine the relationship between slow wave sleep (SWS) and cognitive performance in PD.

Methods: Thirty-two PD participants were evaluated with polysomnography and a comprehensive level II neurocognitive battery, as defined by the Movement Disorders Society Task Force for diagnosis of PD-mild cognitive impairment.

View Article and Find Full Text PDF

Background: Sleep dysfunction is common and disabling in persons with Parkinson's Disease (PD). Exercise improves motor symptoms and subjective sleep quality in PD, but there are no published studies evaluating the impact of exercise on objective sleep outcomes. The goal of this study was to to determine if high-intensity exercise rehabilitation combining resistance training and body-weight interval training, compared with a sleep hygiene control improved objective sleep outcomes in PD.

View Article and Find Full Text PDF

Threat-related emotional function is supported by a neural circuit that includes the prefrontal cortex (PFC), hippocampus, and amygdala. The function of this neural circuit is altered by negative life experiences, which can potentially affect threat-related emotional processes. Notably, Black-American individuals disproportionately endure negative life experiences compared to White-American individuals.

View Article and Find Full Text PDF

Stress elicits a variety of psychophysiological responses that show large interindividual variability. Determining the neural mechanisms that mediate individual differences in the emotional response to stress would provide new insight that would have important implications for understanding stress-related disorders. Therefore, the present study examined individual differences in the relationship between brain activity and the emotional response to stress.

View Article and Find Full Text PDF

Cognitive and emotional functions are supported by the coordinated activity of a distributed network of brain regions. This coordinated activity may be disrupted by psychosocial stress, resulting in the dysfunction of cognitive and emotional processes. Graph theory is a mathematical approach to assess coordinated brain activity that can estimate the efficiency of information flow and determine the centrality of brain regions within a larger distributed neural network.

View Article and Find Full Text PDF

Posttraumatic stress disorder (PTSD) is associated with dysfunction of the neural circuitry that supports fear learning and memory processes. However, much of what is known about neural dysfunction in PTSD is based on research in chronic PTSD populations. Less is known about neural function that supports fear learning acutely following trauma exposure.

View Article and Find Full Text PDF

Stress tasks performed during functional magnetic resonance imaging (fMRI) elicit a relatively small cortisol response compared to stress tasks completed in a traditional behavioral laboratory, which may be due to apprehension of fMRI that elicits an anticipatory stress response. The present study investigated whether anticipatory stress is greater prior to research completed in an MRI environment than in a traditional behavioral laboratory. Anticipatory stress (indexed by cortisol) was greater prior to testing in the MRI environment than traditional behavioral laboratory.

View Article and Find Full Text PDF

BACKGROUND Pathologic alterations in resting-state brain activity patterns exist among individuals with Parkinson's disease (PD). Since physical exercise alters resting-state brain activity in non-PD populations and improves PD symptoms, we assessed the acute effect of exercise on resting-state brain activity in exercise-trained individuals with PD. MATERIAL AND METHODS Resting-state functional magnetic resonance imaging (fMRI) was collected twice for 17 PD participants at the conclusion of an exercise intervention.

View Article and Find Full Text PDF

Background: Patients with Parkinson's disease experience debilitating motor symptoms as well as nonmotor symptoms, such as cognitive dysfunction and sleep disorders. This constellation of symptoms has the potential to negatively influence pedestrian safety. The objective of this study was to investigate the association of motor symptoms, daytime sleepiness, impaired vigilance, and cognitive dysfunction with pedestrian behavior in patients with Parkinson's disease and healthy older adults.

View Article and Find Full Text PDF

Trauma and stress-related disorders (e.g., Acute Stress Disorder; ASD and Post-Traumatic Stress Disorder; PTSD) that develop following a traumatic event are characterized by cognitive-affective dysfunction.

View Article and Find Full Text PDF

Contemporary theory suggests that prefrontal cortex (PFC) function is associated with individual variability in the psychobiology of the stress response. Advancing our understanding of this complex biobehavioral pathway has potential to provide insight into processes that determine individual differences in stress susceptibility. The present study used functional magnetic resonance imaging to examine brain activity during a variation of the Montreal Imaging Stress Task (MIST) in 53 young adults.

View Article and Find Full Text PDF

Background: Prior work examining emotional dysregulation observed in posttraumatic stress disorder (PTSD) has primarily been limited to fear-learning processes specific to anticipation, habituation, and extinction of threat. In contrast, the response to threat itself has not been systematically evaluated.

Objective: To explore potential disruption in fear conditioning neurocircuitry in service members with PTSD, specifically in response to predictable unpredictable threats.

View Article and Find Full Text PDF

Learning the temporal relationship between a warning cue (conditioned stimulus; CS) and aversive threat (unconditioned stimulus; UCS) is an important aspect of Pavlovian conditioning. Although prior functional magnetic resonance imaging (fMRI) research has identified brain regions that support Pavlovian conditioning, it remains unclear whether these regions support time-related processes important for this type of associative learning. Elucidating the neural substrates of temporal conditioning is important for a complete understanding of the Pavlovian conditioning process.

View Article and Find Full Text PDF

The ability to regulate the emotional response to threat is critical to healthy emotional function. However, the response to threat varies considerably from person-to-person. This variability may be partially explained by differences in emotional processes, such as locus of control and affective state, which vary across individuals.

View Article and Find Full Text PDF

Stress resilience is mediated, in part, by our ability to predict and control threats within our environment. Therefore, determining the neural mechanisms that regulate the emotional response to predictable and controllable threats may provide important new insight into the processes that mediate resilience to emotional dysfunction and guide the future development of interventions for anxiety disorders. To better understand the effect of predictability and controllability on threat-related brain activity in humans, two groups of healthy volunteers participated in a yoked Pavlovian fear conditioning study during functional magnetic resonance imaging (fMRI).

View Article and Find Full Text PDF

The ability to respond adaptively to threats in a changing environment is an important emotional function. The amygdala is a critical component of the neural circuit that mediates many emotion-related processes, and thus likely plays an important role in modulating the peripheral emotional response to threat. However, prior research has largely focused on the amygdala's response to stimuli that signal impending threat, giving less attention to the amygdala's response to the threat itself.

View Article and Find Full Text PDF

The ability to predict an impending threat during Pavlovian conditioning diminishes the emotional response that is produced once the threat is encountered. Diminution of the threat response appears to be mediated by somewhat independent associative learning and expectancy-related processes. Therefore, the present study was designed to better understand the neural mechanisms that support associative learning processes, independent of expectancy, that influence the emotional response to a threat.

View Article and Find Full Text PDF

Pavlovian conditioning requires the convergence and simultaneous activation of neural circuitry that supports conditioned stimulus (CS) and unconditioned stimulus (US) processes. However, in trace conditioning, the CS and US are separated by a period of time called the trace interval, and thus do not overlap. Therefore, determining brain regions that support associative learning by maintaining a CS representation during the trace interval is an important issue for conditioning research.

View Article and Find Full Text PDF