Publications by authors named "Kimberly H Hartstein"

Copper-doped II-VI and copper-based I-III-VI colloidal quantum dots (CQDs) have been at the forefront of interest in nanocrystals over the past decade, attributable to their optically activated copper states. However, the related recombination mechanisms are still unclear. The current work elaborates on recombination processes in such materials by following the spin properties of copper-doped CdSe/CdS (Cu@CdSe/CdS) and of CuInS and CuInS/(CdS, ZnS) core/shell CQDs using continuous-wave and time-resolved optically detected magnetic resonance (ODMR) spectroscopy.

View Article and Find Full Text PDF

Copper-sulfide nanocrystals can accommodate considerable densities of delocalized valence-band holes, introducing localized surface plasmon resonances (LSPRs) attractive for infrared plasmonic applications. Chemical control over nanocrystal shape, composition, and charge-carrier densities further broadens their scope of potential properties and applications. Although a great deal of control over LSPRs in these materials has been demonstrated, structural complexities have inhibited detailed descriptions of the microscopic chemical processes that transform them from nearly intrinsic to degenerately doped semiconductors.

View Article and Find Full Text PDF

Colloidal Cu-doped CdSe/CdS core/shell semiconductor nanocrystals (NCs) are investigated in their as-prepared and degenerately n-doped forms using time-resolved photoluminescence and transient-absorption spectroscopies. Photoluminescence from Cu:CdSe/CdS NCs is dominated by recombination of delocalized conduction-band (CB) electrons with copper-localized holes. In addition to prominent bleaching of the first excitonic absorption feature, transient-absorption measurements show bleaching of the sub-bandgap copper-to-CB charge-transfer (MLCT) absorption band and also reveal a photoinduced midgap valence-band (VB)-to-copper charge-transfer (LMCT) absorption band that extends into the near-infrared, as predicted by recent computations.

View Article and Find Full Text PDF

We examine the effects of CdS shell growth on photochemical reduction of colloidal CdSe quantum dots (QDs) and describe the spectroscopic properties of the resulting n-type CdSe/CdS QDs. CdS shell growth greatly slows electron trapping. Because of this improvement, complete two-electron occupancy of the 1S conduction-band orbital is achieved in CdSe/CdS QDs and found to be much more stable than in past experiments.

View Article and Find Full Text PDF

A fundamental understanding of the rich electronic structures of electronically doped semiconductor nanocrystals is vital for assessing the utility of these materials for future applications from solar cells to redox catalysis. Here, we examine the use of magnetic circular dichroism (MCD) spectroscopy to probe the infrared localized surface plasmon resonances of p-CuSe, n-ZnO, and tin-doped InO (n-ITO) nanocrystals. We demonstrate that the MCD spectra of these nanocrystals can be analyzed by invoking classical cyclotron motions of their excess charge carriers, with experimental MCD signs conveying the carrier types (n or p) and experimental MCD intensities conveying the cyclotron splitting magnitudes.

View Article and Find Full Text PDF

Understanding the structural and compositional origins of midgap states in semiconductor nanocrystals is a longstanding challenge in nanoscience. Here, we report a broad variety of reagents useful for photochemical reduction of colloidal CdSe quantum dots, and we establish that these reactions proceed via a dark surface prereduction step prior to photoexcitation. Mechanistic studies relying on the specific properties of various reductants lead to the proposal that this surface prereduction occurs at oxidized surface selenium sites.

View Article and Find Full Text PDF

Colloidal semiconductor nanocrystals offer a unique opportunity to bridge molecular and bulk semiconductor redox phenomena. Here, potentiometric titration is demonstrated as a method for quantifying the Fermi levels and charging potentials of free-standing colloidal n-type ZnO nanocrystals possessing between 0 and 20 conduction-band electrons per nanocrystal, corresponding to carrier densities between 0 and 1.2 × 10(20) cm(-3).

View Article and Find Full Text PDF

Copper-doped semiconductors are classic phosphor materials that have been used in a variety of applications for many decades. Colloidal copper-doped semiconductor nanocrystals have recently attracted a great deal of interest because they combine the solution processability and spectral tunability of colloidal nanocrystals with the unique photoluminescence properties of copper-doped semiconductor phosphors. Although ternary and quaternary semiconductors containing copper, such as CuInS2 and Cu2ZnSnS4, have been studied primarily in the context of their photovoltaic applications, when synthesized as colloidal nanocrystals, these materials have photoluminescence properties that are remarkably similar to those of copper-doped semiconductor nanocrystals.

View Article and Find Full Text PDF

A potentiometric method for measuring redox potentials of colloidal semiconductor nanocrystals (NCs) is described. Fermi levels of colloidal ZnO NCs are measured in situ during photodoping, allowing correlation of NC redox potentials and reduction levels. Excellent agreement is found between electrochemical and optical redox-indicator methods.

View Article and Find Full Text PDF