The urokinase-type plasminogen activator receptor (uPAR) is a glycosylphosphatidylinositol-linked membrane protein with no cytosolic domain that localizes to lipid raft microdomains. Our laboratory and others have documented that lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) exhibit a hypermotile phenotype. This study was undertaken to elucidate the molecular mechanism whereby uPAR ligation with its cognate ligand, urokinase, induces a motile phenotype in human lung fibroblasts.
View Article and Find Full Text PDFFibroblasts from patients with pulmonary fibrosis express higher levels of the receptor for urokinase, and the extent of fibrosis in some animal models exhibits a dependence on the urokinase receptor. Recent observations have identified the urokinase receptor as a trans-interacting receptor with consequences on signaling and cell responses that vary depending on its interacting partner, the relative levels of expression, and the state of cellular transformation. We undertook this study to define the urokinase-type plasminogen activator cellular receptor (u-PAR)-integrin interactions and to determine the functional consequences of such interactions on normal human lung fibroblast attachment and migration.
View Article and Find Full Text PDFThe fibroproliferative response to acute lung injury (ALI) results in severe, persistent respiratory dysfunction. We have reported that IL-1beta is elevated in pulmonary edema fluid in those with ALI and mediates an autocrine-acting, fibroblast mitogenic pathway. In this study, we examine the role of IL-1beta-mediated induction of cyclooxygenase-2 and PGE2, and evaluate the significance of individual E prostanoid (EP) receptors in mediating the fibroproliferative effects of IL-1beta in ALI.
View Article and Find Full Text PDFAlthough the fibroproliferative response to lung injury occurs with a high frequency in patients with clinical acute lung injury, the mechanisms that initiate this response are largely unknown. This study was undertaken first to identify fibroblast mitogenic factors in pulmonary edema fluid, and second to examine the human lung fibroblast's gene expression profile in response to pulmonary edema fluid. The edema fluid obtained from patients with early lung injury has an eightfold higher concentration of IL-1beta and a twofold greater IL-1beta-dependent mitogenic effect than does fluid obtained from control patients with hydrostatic pulmonary edema.
View Article and Find Full Text PDFThe alveolar fibrinolytic system is altered in acute lung injury (ALI). Levels of the fibrinolytic protease inhibitor, plasminogen activator inhibitor-1 (PAI-1), are too low in bronchoalveolar lavage to address its prognostic significance. This study was performed to assess whether PAI-1 antigen in undiluted pulmonary edema fluid levels can identify patients with ALI and predict their outcome.
View Article and Find Full Text PDF