Publications by authors named "Kimberly Butler"

Characterizing and identifying cells in multicellular models remain a substantial challenge. Here, we utilize hyperspectral confocal Raman microscopy and principal component analysis coupled with linear discriminant analysis to form a label-free, noninvasive approach for classifying bone cells and osteosarcoma cells. Through the development of a library of hyperspectral Raman images of the K7M2-wt osteosarcoma cell lines, 7F2 osteoblast cell lines, RAW 264.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are a class of porous, crystalline materials that have been systematically developed for a broad range of applications. Incorporation of two or more metals into a single crystalline phase to generate heterometallic MOFs has been shown to lead to synergistic effects, in which the whole is oftentimes greater than the sum of its parts. Because geometric proximity is typically required for metals to function cooperatively, deciphering and controlling metal distributions in heterometallic MOFs is crucial to establish structure-function relationships.

View Article and Find Full Text PDF

Emerging and re-emerging viral pathogens present a unique challenge for anti-viral therapeutic development. Anti-viral approaches with high flexibility and rapid production times are essential for combating these high-pandemic risk viruses. CRISPR-Cas technologies have been extensively repurposed to treat a variety of diseases, with recent work expanding into potential applications against viral infections.

View Article and Find Full Text PDF

Lifetime-encoded materials are particularly attractive as optical tags, however examples are rare and hindered in practical application by complex interrogation methods. Here, we demonstrate a design strategy towards multiplexed, lifetime-encoded tags via engineering intermetallic energy transfer in a family of heterometallic rare-earth metal-organic frameworks (MOFs). The MOFs are derived from a combination of a high-energy donor (Eu), a low-energy acceptor (Yb) and an optically inactive ion (Gd) with the 1,2,4,5 tetrakis(4-carboxyphenyl) benzene (TCPB) organic linker.

View Article and Find Full Text PDF

We postulate that nanoparticles (NPs) for use in therapeutic applications have largely not realized their clinical potential due to an overall inability to use results to predict NP performance . The avian embryo and associated chorioallantoic membrane (CAM) has emerged as an preclinical model that bridges the gap between and , enabling rapid screening of NP behavior under physiologically relevant conditions and providing a rapid, accessible, economical, and more ethical means of qualifying nanoparticles for use. The CAM is highly vascularized and mimics the diverging/converging vasculature of the liver, spleen, and lungs that serve as nanoparticle traps.

View Article and Find Full Text PDF

For workplaces which cannot operate as telework or remotely, there is a critical need for routine occupational SARS-CoV-2 diagnostic testing. Although diagnostic tests including the CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel (CDC Diagnostic Panel) (EUA200001) were made available early in the pandemic, resource scarcity and high demand for reagents and equipment necessitated priority of symptomatic patients. There is a clearly defined need for flexible testing methodologies and strategies with rapid turnaround of results for (1) symptomatic, (2) asymptomatic with high-risk exposures and (3) asymptomatic populations without preexisting conditions for routine screening to address the needs of an on-site work force.

View Article and Find Full Text PDF

A rapid and facile design strategy to create a highly complex optical tag with programmable, multimodal photoluminescent properties is described. This was achieved via intrinsic and DNA-fluorophore hidden signatures. As a first covert feature of the tag, an intricate novel heterometallic near-infrared (NIR)-emitting mesoporous metal-organic framework (MOF) was designed and synthesized.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) have broad-ranging therapeutic properties, including the ability to inhibit bacterial growth and resolve infection. However, the genetic mechanisms regulating these antibacterial properties in MSCs are largely unknown. Here, we utilized a systems-based approach to compare MSCs from different genetic backgrounds that displayed differences in antibacterial activity.

View Article and Find Full Text PDF

Optical anticounterfeiting tags utilize the photoluminescent properties of materials to encode unique patterns, enabling identification and validation of important items and assets. These tags must combine optical complexity with ease of production and authentication to both prevent counterfeiting and to remain practical for widespread use. Metal-organic frameworks (MOFs) based on polynuclear, rare earth clusters are ideal materials platforms for this purpose, combining fine control over structure and composition, with tunable, complex energy transfer mechanisms via both linker and metal components.

View Article and Find Full Text PDF
Article Synopsis
  • ZIF nanoparticles (NPs) are gaining attention for their easy synthesis, customizable features, and low toxicity, making them promising for biological applications.
  • Researchers focus on synthesizing a complex ZIF, ZIF-20, with two cage types, using microwave heating for quick and tunable production.
  • The study shows ZIF-20's stability in biological media, its compatibility with human cells, and its ability to encapsulate and release therapeutic agents, indicating the potential for broader applications in the field.
View Article and Find Full Text PDF

Optical tags provide a way to quickly and unambiguously identify valuable assets. Current tag fluorophore options lack the tunability to allow combined methods of encoding in a single material. Herein we report a design strategy to encode multilayer complexity in a family of heterometallic rare-earth metal-organic frameworks based on highly connected nonanuclear clusters.

View Article and Find Full Text PDF

Blood flowing through microvascular bifurcations has been an active research topic for many decades, while the partitioning pattern of nanoscale solutes in the blood remains relatively unexplored. Here we demonstrate a multiscale computational framework for direct numerical simulation of the nanoparticle (NP) partitioning through physiologically relevant vascular bifurcations in the presence of red blood cells (RBCs). The computational framework is established by embedding a particulate suspension inflow-outflow boundary condition into a multiscale blood flow solver.

View Article and Find Full Text PDF

CRISPR gene editing technology is strategically foreseen to control diseases by correcting underlying aberrant genetic sequences. In order to overcome drawbacks associated with viral vectors, the establishment of an effective non-viral CRISPR delivery vehicle has become an important goal for nanomaterial scientists. Herein, we introduce a monosized lipid-coated mesoporous silica nanoparticle (LC-MSN) delivery vehicle that enables both loading of CRISPR components [145 µg ribonucleoprotein (RNP) or 40 µg plasmid/mg nanoparticles] and efficient release within cancer cells (70%).

View Article and Find Full Text PDF

We report on the availability and chemical utility of primary amines within metal-organic frameworks (MOFs) for cell targeting. Primary amine groups represent one of the most versatile chemical moieties for conjugation to biologically relevant molecules, including antibodies and enzymes. Specifically, we used two different chemical conjugations schemes, utilizing the amino functionality on the organic linker: first, carbodiimide chemistry was used to link the primary amine to available carboxyl groups on the protein neutravidin; second, sulfhydryl cross-linking chemistry was used via Traut's reagent scheme.

View Article and Find Full Text PDF
Article Synopsis
  • The research presents a method to create synthetic red blood cells (RRBCs) that replicate the size, shape, deformability, and oxygen-carrying abilities of natural red blood cells.
  • The construction of RRBCs involves a series of nanoscale processes, including bioreplication and polymer deposition, all verified through various physicochemical tests.
  • RRBCs demonstrate the ability to navigate small spaces like natural RBCs and can be engineered to perform additional functions, such as drug delivery and biosensing, opening up numerous applications in medicine.
View Article and Find Full Text PDF

Genome editing technologies, particularly those based on zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR (clustered regularly interspaced short palindromic repeat DNA sequences)/Cas9 are rapidly progressing into clinical trials. Most clinical use of CRISPR to date has focused on ex vivo gene editing of cells followed by their re-introduction back into the patient. The ex vivo editing approach is highly effective for many disease states, including cancers and sickle cell disease, but ideally genome editing would also be applied to diseases which require cell modification in vivo.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

Long-term antimicrobial therapies are necessary to treat infections caused by virulent intracellular pathogens, including biothreat agents. Current treatment plans include injectable therapeutics given multiple times daily over a period for up to 8 weeks. Here, we present a metal-organic framework (MOF), zeolitic imidazolate framework-8 (ZIF-8), as a robust platform to support the sustained release of ceftazidime, an important antimicrobial agent for many critical bacterial infections.

View Article and Find Full Text PDF

The progress of nanoparticle (NP)-based drug delivery has been hindered by an inability to establish structure-activity relationships in vivo. Here, using stable, monosized, radiolabeled, mesoporous silica nanoparticles (MSNs), we apply an integrated SPECT/CT imaging and mathematical modeling approach to understand the combined effects of MSN size, surface chemistry and routes of administration on biodistribution and clearance kinetics in healthy rats. We show that increased particle size from ~32- to ~142-nm results in a monotonic decrease in systemic bioavailability, irrespective of route of administration, with corresponding accumulation in liver and spleen.

View Article and Find Full Text PDF

Herein, we describe a novel multifunctional metal-organic framework (MOF) materials platform that displays both porosity and tunable emission properties as a function of the metal identity (Eu, Nd, and tuned compositions of Nd/Yb). Their emission collectively spans the deep red to near-infrared (NIR) spectral region (∼614-1350 nm), which is highly relevant for in vivo bioimaging. These new materials meet important prerequisites as relevant to biological processes: they are minimally toxic to living cells and retain structural integrity in water and phosphate-buffered saline.

View Article and Find Full Text PDF

Many nanocarrier cancer therapeutics currently under development, as well as those used in the clinical setting, rely upon the enhanced permeability and retention (EPR) effect to passively accumulate in the tumor microenvironment and kill cancer cells. In leukemia, where leukemogenic stem cells and their progeny circulate within the peripheral blood or bone marrow, the EPR effect may not be operative. Thus, for leukemia therapeutics, it is essential to target and bind individual circulating cells.

View Article and Find Full Text PDF